Structuring Formal Requirements Specifications
for Reuse and Product Families

NAG-1-2242
Deliverable
Title: Final Report
WBS/Task: 2
Date: September 9, 2001
Grant

v

- -
NumbeQ NAG-1-2242 h

Project Title: Structuring Formal Requirements Specifications
for Reuse and Product Families

Contractor: University of Minnesota

Principal Investigator
Name: Dr. Mats P.E. Heimdahl

Title: Associate Professor
Phone: (612) 625-2068
Fax: (612)625-0572

Email: heimdahl@cs.umn.edu

RCVD

158

s

Structuring Formal Requirements Specifications
for Reuse and Product Families:

Final Report

Mats P.E. Heimdahl

(612)-625-2068
heimdahl@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota
4-192 EE/SC Building
200 Union Street S.E.
Minneapolis, Minnesota 55455

Abstract

In this project we have investigated how formal specifications should be structured to allow for
requirements reuse, product family engineering, and ease of requiremerts change. The contributions
of this work include (1) a requirements specification methodology specifically targeted for critical
avionics applications, (2) guidelines for how to structure state-based specifications to facilitate ease
of change and reuse, and (3) examples from the avionics domain demonstrating the proposed
approach.

Table of Contents

1 INEOQUCHION....c..icieiiiitiici ettt ettt ettt b et e b e s e b s b et enesaenessenes 7
1.1 Reading This REPOTt.......cocciiiiiiiiiiiiciiinecenere et et s 7
2 PrOJECt OVEIVIEW ...oeouiiiiiiieiieiieieeteeite ettt et sae et eet e b esbt et e sae e beestn e re e et ennesteesueesessuesstens 8
2.1 LItETAtUIE SUIVEY ..eeveruieiineeeireieittestestesiesteetteteesaesetsseesbesbesateessesaneesseraeeestentsnatessneatsebeeateane 8
2.2 Development of @ Methodology........cccovevuireririiiirniiiincrecineres e 8
Appendix A - Draft MethOdOIOEY..........cocvvieeiiereiiieierecirees st sesa st sesessstsseeeseeseseseseseneaens 9

11

Appendix B - Jeffrey M. Thompson’s DisSertation............cocccoveceirvinniiineninnnninnicnnene

1 Introduction

Incomplete, ambiguous, or rapidly changing requirements are routinely cited as one of the major
cost drivers for software development. In addition, in the domain of safety critical systems
researchers have found that requirements errors are more likely to impair safety than errors
introduced during design or implementation.

Using a formal notation to specify the requirements addresses most of the problems with
incompleteness and ambiguity. Languages based on finite state machines such as Statecharts,
SCR (Software Cost Reduction), SpecTRM (Specification Tools and Requirements
Methodology), and RSML (Requirements State Machine Language), have been successfully
used in a number of projects related to NASA’s mission. These languages are easy to use, allow
automated verification of properties such as completeness and consistency, and support
execution and dynamic evaluation.

However, a formal requirements specification does not solve the problems incurred by rapidly
changing requirements. The specification must be structured in such a way that it is easy to
change and the impact of the changes is limited. Moreover, to reduce the cost of software
development the requirements specification should be structured in a way that allows for
requirements reuse and the development of product families. Few guidelines have been defined
describing how formal requirements specifications should be structured to achieve these
objectives. Those that do exist are inadequate and do not sufficiently address the tradeoffs
affecting the structure of a state-based specification.

In this project we have investigated how formal specifications should be structured to allow for
requirements reuse, product family engineering, and ease of requirements change. The
contributions of this work include (1) a requirements specification methodology specifically
targeted for critical avionics applications, (2) guidelines for how to structure state-based
specifications to facilitate ease of change and reuse, and (3) examples from the avionics domain
demonstrating the proposed approach.

1.1 Reading This Report
This report contains a short overview of the project as well as the product resulting from the

work—a draft methodology description. Since the work grew beyond the initial scope of the
project, we have also included a copy of a dissertation that resulted from this project.

Final Report Page 7 of 12

2 Project Overview

2.1 Literature Survey

To ensure that we did not overlook any important trends or duplicated work, we performed a
literature study covering the material relevant for this project. In particular, we investigated the
current state of the art with respect to requirements modeling and product families. This survey is
included as part of the methodology in Appending A as well as in the dissertation included as
Appendix B.

2.2 Development of a Methodology

A methodology consists of a set of strategies that make an approach work and the steps that must
be followed to apply that approach. None of the methodologies we investigated at the start of this
project, including SCR, RSML, SpecTRM, Statecharts, and object-oriented methods, adequately
addressed the issue relevant for this investigation, namely structuring for product family
engineering. Since no acceptable approach was found during the literature survey, we defined a
methodology that addresses the issues by emphasizing the best strategies of the existing
approaches. A partial list of these strategies include:

o Making a clear distinction between the environment and the system.

e Stating requirements as constraints on the environment.

e Clearly relating the system and software requirements.

e Presenting requirements in a form that can be read by all stakeholders.

e Using executable requirements models to drive simulations of the user interface.

e Separating the essential requirements of the system from user interface requirements.

e Secparating the essential requirements of the system from the hardware interface
requirements.

e Anticipating change and organizing the requirements to minimize the effects of change.
These strategies were used to guide the development of the methodology. The methodology
defines both the strategies and the set of steps to be followed in developing the requirements

model. The final draft of the methodology is included in Appendix A and constitutes the final
deliverable in this project.

Final Report Page 8 of 12

Appendix A - Draft Methodology

Final Report Page 9 of 12

Final Report Page 10 of 12

Product Families, Formality, and Reuse:
A Guide to the FORMpcs Method

Jeffrey M. Thompson
Mats P.E. Heimdahl
Department of Computer Science and Engineering
University of Minnesota

Draft produced on September 29, 2002

i

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

Contents

Acknowledgements xi
1 Introduction 1
1.1 Purpose of this Guide Book 3

1.2 Intended Audience 3

1.3 Scope of the Method and Guidebook 4
Background Material 4
2 Problems with Requirements 5
2.1 Integrating Systems and Software Engineering 5
2.2 Volatility of Requirements 5
2.3 Legacy Systems 6
24 Planning ForReuse L. 6
2.5 Satisfying All Stakeholders 6
2.6 Identifying the Customer’s True Needs 7
2.7 Avoiding Implementation Bias 0. 7
2.8 Support for Automated Tools 7

3 Current Limitations 9
3.1 Natural Language Requirements 9
3.2 Formal Models 10
321 TheEarlyWork. 11

3.2.2 The State-based Notations 11

3.2.3 The Role of Object Orientation: 13

3.3 Prototyping 14
3.4 Product Family Engineering 15
35 Summary 16

i

v CONTENTS

4 System Model 17
4.1 Process Control Systemso 17
4.2 The Four-Variable Model and CoRE 20

421 DISCUSSION . « « . v v e e e e e e 23
4.3 The WRSPM Model and REVEAL 24
4.4 The FORMpcs More Variable Model 28

5 Product-Line Engineering Concepts 33

5.1 n-Dimensional and Hierarchical Product Lines 34
5.1.1 n-Dimensional product families 34
5.1.2 Hierarchical product families 35

5.2 Structuring Families 36

5.3 Addressing existing issueso 38

54 BenefitsS . . . - . o o e e e 40

Methodology Praticum 42

6 Methodology at a Glance 43
6.1 Idealized FORMpeg Process o . oo oo oo 43

6.1.1 Commonality Analysis 44
6.1.2 Environmental Variableso 44
6.1.3 Initial Structure e 44
6.1.4 Draft Specificationo 45
6.1.5 Detailed Requirements 45
6.1.6 Sensors and Actuatorso 46

6.2 Normal Iteration Among the Phases 46
6.2.1 Constructing Partial Specifications 46
6.2.2 Monitored and Controlled quantities 46
6.2.3 Draft Requirements and Requirements Structure 47
6.2.4 Detailed Requirements and Prior Phases 47

7 Commonality Analyis 49
71 Goals e 49
7.9 Entrance Criteria v o o v o o i e e 50
7.3 ACtiVILIES . . o . o e e e e e 50

7.3.1 Define the Top-Level Family 50
7.3.2 Initial Commonalities and Variabilities 51
7.3.3 Identify Family Structure 55
7.3.4 Elaborate Variabilities and Commonalities 57

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

CONTENTS v

7.3.5 Define the Decision Model, 58

7.4 Evaluation Criteria 59
7.5 Exit Criteria e 60

8 Environmental Variables 61
8.1 Goals. e 61
8.2 Entrance Criteria 62
8.3 Activities e e 62
8.3.1 Identifying Controlled Variables 62

8.3.2 Identifying Monitored Variables 63

8.3.3 Define the Variables 64

8.3.4 Define Relationships Among Variables 65

8.4 Evaluation Criteria o 68
85 Exit Criteria e 69

9 Initial Structure 71
9.1 Goals. 71
9.2 Entrance Criteria 71
9.3 Activities e 72
9.3.1 Define Dependancy Relationships 72

9.3.2 Define Modules and Interfaces 72

9.4 Evaluation Criteria 73
95 Exit Criteria. v o e 73
10 Draft Requirements 75
10.1 Goals e e 75
10.2 Entrance Criteriao 76
10.3 Activities e e 76
10.3.1 Specify Each Controlled Variable 76

10.3.2 Identify Potential Modes 79

10.3.3 Using Tools to Visualize the Preliminary Behavoral Specification . . 81

10.4 Evaluation Criteria e 82
10.5 Exit Criteria e 83
11 Detailed Requirements 85
11.1 Goals 85
11.2 Entrance Criteria 85
11.3 Activities 86
11.3.1 Specify Initialization and Shutdown Activities 86

11.3.2 Specify Error Handling 87

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

vi CONTENTS

11.3.3 Degraded Modes of Functionality
11.3.4 Specify Tolerances and Handle Violations
11.4 Evaluation Criteria e
11.5 Exit Criteria e

12 Sensors and Actuators
12.1 Goals e
12.2 Entrance Criteria v v i e e e
12.3 Activities e
12.3.1 Identify and Describe the Sensors and Actuators
12.3.2 Outline the IN"! and OUT™! Relations
12.3.3 Specify the Normal-Case
12.3.4 Specify Detailed SOFT Relation
12.4 Evaluation Criteria e e
12.5 Exit Criteria o e e

Supplemental Material

A The ASW in RSML™ - Phase 1
A.1 Commonalities and Variabilities for the ASW
A2 Structure and Members of the ASW Family
A.3 Decision Model for the ASW L o

The ASW in RSML™¢- Phase 2
The ASW in RSML°- Phase 3
The ASW in RSML ¢ Phase 4

The ASW in RSML™%- Phase 5

=SB < w B & I v+

The ASW in RSML ¢ Phase 6
References

Index

111

117

129

147

171

175

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

List of Figures

3.1

4.1
4.2
4.3

4.4
4.5

5.1
8.2
5.3
5.4
5.5
5.6
5.7

7.1
7.2
7.3

8.1
8.2
8.3

9.1

Al
A2
A3

A simple product family L 15
A basic process-control model L. 18
The four-variable model. 21
The world, requirements, specification, program, and machine (WRSPM)

model. 25
The FORMpcs system model adapted from [48,59] 29
Refining REQ to SOFT 31
A simple product family 34
FGS product family covering flying craft 35
Hierarchical decomposition and subset structure 36
Abstract verses non-abstract families 37
Set intersection and non-hierarchical structure 38
Set representation of a near-commonality 39
Cost-benefit of the FGS Family, 41
The ASW family structure visualized in 2 dimensions 56
The structure of the Altitude Dimension for the ASW 57
A tabular representation of the ASW family decision model 59
The CON_DOI variable in Phase 2 of the methodology 66
The MON_Altitute variable in Phase 2 of the methodology 67
The System Context Diagram for the ASW in this Phase 68
Module Defined to threshold altitude 74
The ASW family structure visualized in 2 dimensions 102
The structure of the Altitude Dimension for the ASW 102
A tabular representation of the ASW family decision model 103

vil

viii LIST OF FIGURES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

List of Tables

ix

X LIST OF TABLES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Acknowledgements

The authors wish to thank Dr. Steven P. Miller from the Advanced Technology Center
at Rockwell Collins, Inc, Cedar Rapids, lowa. Dr. Miller provided the initial outline of a
methodology that initiated this work and has been instrumental in the evolution of our
thinking. Much of the material in Chapters 1 and 2 was contributed by Dr. Miller in the
early stages of this project. His contributions, feedback, and knowledge of the domain are
deeply appreciated.

xi

xil CHAPTER 0. ACKNOWLEDGEMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 1

Introduction

Incomplete, ambiguous, or rapidly changing requirements are known to have a profound
impact on the quality and cost of software development. Fred Brooks states the problem
succinctly in [5]

The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as establishing
the detailed technical requirements...No other part of the work so cripples the
resulting system if done wrong. No other part is as difficult to rectify later.

Studies have shown that the majority of software development errors are made during
requirements analysis, and that most of these errors are not found until the later phases
of a project. Other studies have shown that due to the amount of rework that has to be
done, the cost of fixing a requirements error grows dramatically the later it is corrected
[4],[7],(29],(24]. In one well-known study conducted at TRW, it was found that it costs ten
times as much to correct a requirements error during unit testing than during requirements
analysis. Correcting a requirements error after a product had been deployed increased the
cost by 100 to 200 times [4]. Moreover, requirements errors are often the most serious errors.
Investigators focusing on safety-critical systems have found that requirements errors are
most likely to affect the safety of embedded system than errors introduced during design
or implementation [16], [19].

The need for better methods and tools for requirements analysis has long been cited
as one of industry’s primary needs. for example, in 1990, Rockwell Collins Inc. identified
improving requirements capture as its highest priority to the Software Productivity Con-
sortium, stating that “requirements are incomplete, misunderstood, poorly defined, and
change in ways that are difficult to manage” [8].

Perhaps even more importantly, solving the requirements problem is an essential step in
solving many other software development problems. The disjunction between systems and

1

2 CHAPTER 1. INTRODUCTION

software engineering, often cited as a major cost in the development of avionics systems,
is precisely a problem in requirements allocation and translation. Software verification is
widely recognized as one of the largest costs in developing safety-critical systems, but most
of the remaining ways of reducing verification costs, such as automating the testing process
or automatic generation of test cases, require formal requirements and design models. Out-
sourcing software development has been proposed as a way of reducing development costs,
but this is impractical until we are able to generate precise, readable, and unambiguous
specifications of the requirements—requirements that can then be used as the basis for
out-sourcing.

This document describes the FORMpcs requiremetns development method for creat-
ing models of subsystem and software requirements that are precise, readable by a wide
audience, and robust in the face of change. The methodology integrates the perspectives
of system and software engineering, supports the concept of product family engineering,
and helps to identify oversights and inconsistencies early in the lifecycle. While strongly
influenced by CoRE (8], [9], [10], SCR [14], and RSML [13], [15], the methodology is largely
notation independent and is meant to be compatible with a number of commercially avail-
able tools and notations, including many of the emerging object-oriented notations.

FORMpcs is a coherent requirements development method that aims to achieve the
following:

Separate System Requirements from Software Requirements: Confusion over what
constitutes system requirements versus sub-systems or software requirements is a
source of problems in requirements modeling. If the initial requirements are mod-
eled at the wrong level of abstraction, changes can be very difficult to accomplish.
FORM pcs defines the distinction between these levels of abstraction and provides
guidelines on how to refine the system requirements to software requirements.

Provide Guidance: FORMpcs provides ezplicit steps on how to move from the initial
informal requirements, through product family engineering, to a rigorous statement
of the required software behavior. The steps are developed to provide guidance at a
level suitable for industrial application and this document could serve as a text in a
requirements modeling course in the critical systems domain.

Integrate Product Family Engineering and Formal Modeling: Although FORMpcg is
intended to be notation and language independent, the primary target notation for
the work is some formal modeling language (such as RSML~¢, SCR, or VDM-SL).
FORM p¢s provide guidelines on how the ideas in product family engineering can be
integrated into these formal modeling techniques. The aim is to achieve flexible reuse
in the requirements domain as well as in the code domain.

Avoid Premature Design: FORMpcs allows the analyst to model the desired behavior
of the proposed system at increasingly refined levels of abstraction. These models

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

1.1. PURPOSE OF THIS GUIDE BOOK 3

capture the desired relationship between the various variables in the system. This
allows an analyst to specify what the software shall do with little introduction of
(software) design details.

Include Continual Requirements Evaluation: To allow an analyst to evaluate the
proposed behavior of a new system, FORMpcg advocates modeling in an executable
language and continual dynamic evaluation of the model through simulation—a de-
velopment approach we call specification based prototyping. This evaluation will allow
early customer involvement, enhance requirements elimination, and provide better
risk management as compared to not using executable models.

1.1 Purpose of this Guide Book

this method guide provides a detailed set of guidelines on how to apply the FORMp¢s ap-
praoch to requirement modeling. It is intended both as a reference guide for experienced
analysts and a self-study guide for the inexperienced analyst. The guide addressed the
following:

e An overview of common problems in requirements modeling.

e An overview of the fundamentals of requirements; what is a requirement and how do
we separate system requirements from software requirements. We provide an short
description of the most influential related work and present the FORMpcg view of
this issue.

¢ A new way of viewing product families, their commonalities, and their variabilities.

e Guidelines and step-by-step instructions on how to scope a system, structure the
requirements, and refine the system requirements to software requirements.

e A process for developing requirements for control applications.

e Illustration of the technique through a running example and two completed require-
ments models.

1.2 Intended Audience

This guidebook is intended for the practicing engineer that is developing requirements for
various control oriented applications. Our primary concern is safety critical applications,
but the techniques are applicable to all types of control systems.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

4 CHAPTER 1. INTRODUCTION

We assume the reader has experience in the development of control applications, espe-
cially the critical issues involving time and interaction with hardware, to full appreciate the
material covered in this guide. In addition, we assume familiarity with finite state machines,
sets, and Boolean expressions. Any computer science textbook on discrete mathematics
will serve as an appropriate reference for the reader unfamiliar with these topics.

The notation used in the running example (RSML™%) will not be fully described in this
report—detailed discussions of RSML™¢ are readily available in, for example, [58, 60, 61]
and a formal description of the language is available in [64].

1.3 Scope of the Method and Guidebook

The FORMpcg covers modeling of the required behavior of control systems. It addresses
the identification of the system boundary, identification of commonalities and variabilities
for product family engineering purposes, and the structuring of the requirements models.

Although the thinking presented in this guide is widely applicable, it is mostly appli-
cable to systems where it is intuitive to think of the software as controlling some physical
system, that is, a system where the software is responsible for monitoring changes in the
environment (using sensors) and effecting the environment through control commands (us-
ing some actuators). Naturally, one can view organizations as physical systems and much
of the thinking could be extended to apply in the information systems domain.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 2

The Problems with Requirements

In developing a methodology for specifying and modeling requirements, there are countless
choices that must be made. These choices should be made to solve the most important
problems faced by system developers. This section discusses the most important issues in
requirements specification and modeling that arise in industrial use. Every methodology
choice should be traceable back to one of these issues. To be successful, a methodology
must address all of these issues.

2.1 Integrating Systems and Software Engineering

System and software requirements are inextricably intertwined. Unfortunately, systems
and software engineers often use different paradigms, different notations, and have different
areas of expertise. Since the system engineers usually work more closely with the customer,
this mismatch can cause discrepancies to be found late in the program, possibly even
after delivery. In many cases, even the format and level of detail of the requirements are
not agreed upon. This can lead to an expensive and error prone process as the system
requirements are translated or expanded into the form needed by the software engineers.
This difference in paradigms can also lead to an incorrect perception of the cost of change.
Systems engineers often make what seem to be very simple changes without appreciating
the full cost of implementing those changes in software.

2.2 Volatility of Requirements

Few things cause more havoc on a software project than constantly changing requirements,
yet the requirements almost always change. Requirements change due to a variety of
reasons, including changing customer expectations, not understanding what the customer
wanted in the first place, changing system architectures due to a lack of good systems

5

6 CHAPTER 2. PROBLEMS WITH REQUIREMENTS

engineering practices, and changing the hardware interfaces to the software. Requirements
may even change due to competition between vendors that impact the schedule or scope
of ongoing projects.

2.3 Legacy Systems

Legacy systems are both one of a company’s greatest assets and one of their greatest
liabilities. During maintenance, requirements changes must be written, implemented, and
verified. Unfortunately, legacy systems are usually based on textual requirements and are
not structured so that a new method or notation can be easily introduced. Compounding
the problem, the cost of modeling requirements may appear so great as to not justify
the benefits, particularly if the project manager has not seen requirements models used
on other projects. Even new projects are usually patterned after existing systems. As a
result, determining how a project can migrate from its current practices to a new method
and system architecture can be a major hurdle.

2.4 Planning For Reuse

Closely related to the issue of legacy systems is that of planning for reuse. In today’s
competitive environment, companies tend to make variations of the same product over
and over. A significant cost of each such product is defining its requirements and ensur-
ing that they meet the customers needs. While the requirements of each such product
may appear to vary widely, the essential behavior of these systems are largely the same.
Unfortunately, most methods and notations for requirements specifications do not provide
guidance on how to reuse common portions of the requirements and how to minimize the
cost of incorporating changes from one product to the next.

2.5 Satisfying All Stakeholders

Software requirements have to meet the needs of a diverse set of stakeholders, including but
not limited to the customer, end users, program management, systems engineers, software
engineers, hardware engineers, test engineers, and regulatory agencies. They must be clear
enough that end users can understand them, yet complete and precise enough that the
software engineers can implement the correct system and develop a comprehensive set of
test cases. It is very difficult for one notation to meet all these needs. Often, the solution
is to produce a different presentation for each audience. However, this introduces a new
problem of maintaining consistency between the various presentations.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

2.6. IDENTIFYING THE CUSTOMER’S TRUE NEEDS 7

2.6 Identifying the Customer’s True Needs

Software requirements seldom specify the system actually needed by the customer. They
are invariably incomplete, incorrect, and inconsistent. This occurs for a variety of reasons.
The customer usually does not have a precise understanding of the system they want. The
requirements for the software may not be complete until well into the project, so design may
have to proceed with incomplete requirements to meet schedule. The level of detail needed
to fully specify the software is seldom appreciated, so requirements are usually incomplete.
Requirements are usually specified in English, which is notorious for being ambiguous. It is
also very difficult to check an informal English specification for omissions, inconsistencies,
and errors. Finally, there are normally so many requirements that they can easily contain
inconsistencies that don’t surface until design or implementation. Unfortunately, current
tools for requirements capture do little to help identify these errors.

2.7 Avoiding Implementation Bias

At the same time, it is also important to avoid over-specification of the requirements, in-
troducing design and implementation issues. Over-specification constrains the designers of
the software, preventing them from using their expertise to make choices that would result
in a better system. It also makes it difficult to determine what part of the requirements can
be changed once the product is fielded in order to meet new demands and constraints. The
reason that implementation bias creeps into design is that most methods fail to distinguish
clearly between requirements and high level design. As a result, there is a need for good
criteria for deciding when the requirements have been adequately specified.

2.8 Support for Automated Tools

Automated tools are not essential to address the issues raised above. In fact, a completely
manual method that addresses these issues will produce better results than an automated
method that does not. However, automated tools can be of immense value in keeping a
requirements model consistent, checking for certain forms of errors, generating test cases,
and producing different view of the model. Executable models, when combined with a
mock-up of the system and user interfaces, can be invaluable in validating the requirements
with the customer. For all of these reasons, it is important that a method be supported
by automated tools.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

8 CHAPTER 2. PROBLEMS WITH REQUIREMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 3

Limitations with Current Approaches

Surprisingly, methods and tools for requirements modeling and analysis are much less
mature than those available for the later stages of coding and design. Requirements have
traditionally been stated as English statements, and requirements analysis is often limited
to informal inspections, tracing between system, software, and hardware requirements,
and tracing between software requirements, design, code, and tests. However, English
specifications are infamous for being ambiguous, incomplete, incorrect, and inconsistent. If
we are lucky, these problems are found at considerable cost during design, implementation,
or testing. In this chapter we provide a short overview of the state of the art in requirements
specification and modeling, and point out the limitations.

3.1 Natural Language Requirements

The overwhelmingly most popular language for requirements capture is natural language
(for example, English). Natural language has many advantages.

Flexible: A natural language specifications is infinitely flexible and can be used to express
the requirements for essentially any system. Natural language is not subject to the
arbitrary modeling restrictions more formal notations impose. Natural language can
be sued to capture both the intended behavior of a proposed system as well as all
non-functional requirements that can often not be captured formally (for example,
maintainability, scalability, etc.).

Universally understandable: Natural language is universally understood by the devel-
opment teams and no extra training is needed for a team to understand and use a
natural language requirements document.

Easily accepted: Natural language requirements are the accepted practice in industry

9

10 CHAPTER 3. CURRENT LIMITATIONS

and there is little or no resistance introducing natural language as a requirements
language into an organization with a non-existing requirements process.

Naturally, there are many disadvantages with natural language documents—they are
notorious for being ambiguous, incomplete, poorly organized, and generally very large and
cumbersome to read.

Ambiguous: Natural language is inherently ambiguous and the meaning of a natural lan-
guage statement is always open to multiple interpretations. This can be somewhat
alleviated by using a restricted and well defined subset of the language for require-
ments definition. This does, however, not solve this problem to a large extent.

Incomplete: We make a distinction between internal and external completeness. Internal
completeness means that we have covered all aspects of the cases the requirements
address, that is, if we have covered what to do in case condition C holds, we also
have to cover what to do if C does not hold. External completeness means we have
identified all the relevant customer requirements. Naturally, external completeness is
much harder to achieve. In a natural language requirements document, both notions
of completeness have to be assured manually through inspections—a very difficult
task. Consequently, natural language requirements are typically both internally and
externally incomplete.

Large and Un-organized: these properties are not inherent in natural language require-
ments documents—they just seem to become large and poorly organized over time.
Well written natural language requirements do not suffer from these problems. Most
natural language requirements documents, however, are not well written—-they typ-
ically treat the document as a combination of requirements, design, users manual,
and tutorial. Consequently, the document grows out of control and becomes basically
useless as a requirements document.

3.2 Formal Models

A better approach is to refine the English statement of the requirements into a precise
model that can be executed. Requirements models are written in notations specifically
developed to make requirements readable and mathematically precise, such as SCR [14],
RSML [15], SpecTRM [18], Statecharts [12], and RSML~¢. Creating models based on
these notations have been shown to find a wealth of errors in textual specifications[13},[21].
Moreover, such models can be connected to a mock-up of the user interface and executed
with the customer in the same way as a simulation, or some tools also support “hardware-
in-the-loop” simulations, for example, the NIMBUS environment for RSML7¢. In the best

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.2. FORMAL MODELS 11

approaches, the underlying notation has been carefully designed to support automated
analyses. These make possible a variety of consistency and completeness checks that find
many errors, as well as the ability to check for properties specific to the application being
modeled. Finally, the requirements model itself becomes a detailed statement of the desired
behavior. This enhances design and testing, and makes it far more feasible to outsource
the software development.

3.2.1 The Early Work

Early work in this area resulted in a collection of notations collectively calls executable spec-
ification languages. An executable specification language is a formally well defined, very
high-level specialized programming language. Most executable specification languages are
intended to play multiple roles in the software development process. For instance, lan-
guages such as PAISLey [65], ASLAN [4], and REFINE [1] are intended to replace require-
ments specifications, design specifications, and, in some instances, implementation code.
Executable specification languages have achieved some success and have been applied to
industrial size projects. Many languages have elaborate tool support and facilitate refine-
ment of a high-level specification into more detailed design descriptions or implementation
code.

Nevertheless, current executable specification languages have several drawbacks. Most
importantly, the syntax and semantics are close to traditional programming languages.
Therefore, they currently do not provide the level of abstraction and readability necessary
for a requirements notation [15, 16].

3.2.2 The State-based Notations

Notable exceptions to the first generation of executable specificaiton languages are a collec-
tion of state-based notations. Statecharts (20, 21}, SCR (Software Cost Reduction) [26, 27],
and the RSML [42], are very high-level and provide excellent support for inspections since
they are relatively easy to use and understand for all stakeholders in a specification ef-
fort. These languages allow automated verification of properties such as completeness and
consistency [22, 26], and efforts are underway to model check state-based specifications of
large software systems [3, 12].

Software Cost reduction—SCR: SCR is a research prototype created by the Naval
Research Lahoratory [14]. Based on Parnas’s four-variable model [27] (discussed in detail
in Chapter XX), SCR specifies a zero-time, black-box model of the system, effectively
defining a transform function from the inputs to the outputs. There is no notion of sending
or receiving messages or events in SCR. Instead, communication between components
is based on change events (a change in value of a component) and simple references to

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

12 CHAPTER 3. CURRENT LIMITATIONS

variables. This discourages the introduction of implementation bias into the requirements
(see the discussion of RSML and SpecTRM below). While SCR supports an impressive
array of automated analyses, the tool set itself is not ready for industrial use except on
small pilots. Also, SCR has limited mechanisms for organizing a model into parts that are
likely to change together. This makes it difficult to manage requirements volatility and
plan for change and reuse of the model.

Requirements State Machine Language—RMSL: RSML is also a research proto-
type produced by the Nancy Leveson’s group at the University of California at Irvine (later
moved to the University of Washington) [15]. RSML was used to specify TCAS-II and this
specification was ultimately adopted by the FAA as the official specification for TCAS-II.
RSML was heavily influenced by both Statecharts and SCR, and makes heavy use of inter-
nal broadcast events for communication between components. In the course of developing
the TCAS-II specification, Leveson’s group discovered that their most common source of
errors was this dependence on internal broadcast [18]. In effect, the specifiers were lured
into creating overly complex models that contained implementation bias. To address this
concern, they have eliminated the use of internal broadcast events in favor of the change
events found in SCR. The new language and tool set is be released shortly under the name
SpecTRM by the Safeware Engineering Corporation [18].

Statecharts: One of the most widely known requirements modeling notations is Stat-
echarts. A commercial version of Statecharts is available in the STATEMATE tool [12],
but it is based on a functional decomposition paradigm that, besides running counter to
the trend towards object orientation among software engineers, also makes it more difficult
to extend models, minimize the cost of requirements volatility, and plan for change and
reuse. Like RSML, Statecharts makes extensive use of internal broadcast events, rather
than change events, for communication between components. The complexity and richness
of the notation also makes it difficult to analyze STATEMATE models with automated
tools.

RSML Without Events—RSML™: Initial experiences with RSML (see above) were
a success and the language was well-liked by users, engineers, and computer scientists.
The explicit event propagation mechanism (shared with Statecharts) , however, was a
major source of errors and misconceptions [41]. Therefore, as an evolution, researchers
eliminated the events from RSML and ordered the computation based solely on the data
dependencies of the specification entities. The resulting language, RSML™, has a fully
formal semantics [64] and interfaces for the specification of inter-component communica-
tion [23]. RSML™¢ is a cousin to SpecTRM-RL (sec above) described in [41] in that they
share similar semantics but the syntax is substantially different. RSML™° has a fully for-

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.2. FORMAL MODELS 13

mal semantics and is supported with the NIMBUS environment. The NIMBUS environment
is based on the ideas that (1) the engineers would like to have an executable specification
of the system early in the project and (2) as the specification is refined it is desirable to
integrate it with more detailed models of the environment.

Other Approaches: [n addition to these tools, a number of design modeling tools have
appeared on the market, such as ObjecTime, Object Geode, SCADE, and Rhapsody.
While many of these tools do a fine job of modeling software designs, there are problems
with using them to model requirements. Since they are intended as design tools, they
blur the distinction between requirements and design, force implementation bias into the
requirements, and obscure the requirements with design artifacts.

Unfortunately, there are no clear front runners in the list described above. Choosing
between commercially available tools emphasizes the importance of first identifying the
issues to be addressed, then defining a methodology to be followed in developing the
requirements. Tools can then be selected or developed based on their ability to support the
methodology. Unfortunately, there are also few good methods for requirements modeling.
The CoRE method from the Software Productivity Consortium is one of the most complete
methods available [8], [9], [10], but SPC is not evolving the method further and provides
only limited support for it. SCR is based on the same methodology as CoRE, but a
definitive description of the methodology does not exist. While RSML has been very
successfully practiced by its originators, they have not published a full description of the
methodology they followed in using RSML. A similar criticism can be leveled against
SpecTRM and RSML™* also—they have been language and tool oriented, but method
support has been lacking.

3.2.3 The Role of Object Orientation:

Recently, object oriented methods have received a great deal of attention. In particular,
the Unified Modeling Language (UML) is gaining considerable acceptance in industry.
On the surface, these notations appear similar to languages such as SCR and RSML.
However, they all currently lack a precise semantics. As a result, users may interpret the
same specification in very different ways and tool vendors are free to provide different
interpretations with their tools. Also, most of these notations were not developed as
requirements modeling languages. As a result, they include constructs that should not be
used in modeling requirements, lack some constructs that are needed, and seldom come
with a sound methodology for specifying requirements. The attraction of such notations
is their widespread appeal to industry and the promise of commercially available tools.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

14 CHAPTER 3. CURRENT LIMITATIONS

3.3 Prototyping

A common approach to finding requirements errors sooner is to create a rapid prototype
of the system before starting the design phase. Besides flushing out many oversights, this
provides a simulation that can be explored with the customers to ensure their needs are
completely understood. The disadvantage is that simulations can be expensive to create,
often model only a portion of the behavior, and are usually discarded once the actual
product is developed.

There are two main approaches to prototyping. One approach is to develop a draft
implementation to learn more about the requirements, throw the prototype away, and then
develop production quality code based on the experiences from the prototyping effort. The
other approach is to develop a high quality system from the start and then evolve the
prototype over time. Unfortunately, there are problems with both approaches.

The most common problem with throw away prototyping is managerial, many projects
start developing a throw away prototype that is later, in a futile attempt to save time,
evolved and delivered as a production system. This misuse of a throw-away prototype
inevitably leads to unstructured and difficult to maintain systems.

Dedicated prototyping languages have been developed to support evolutionary proto-
typing [36, 46]. These languages simplify the prototyping effort by supporting execution
of partial models and providing default behavior for under-specified parts of the software.
Although prototyping languages have achieved some initial success, it is not clear that
they provide significant advantages over traditional high-level programming languages.
Evolutionary prototyping often lead to unstructured and difficult to maintain systems.
Furthermore, incremental changes to the prototype may not be captured in the require-
ments specification and design documentation which leads to inconsistent documentation
and a maintenance nightmare.

Software prototypes have been successfully used for certain classes of systems, for ex-
ample, human-machine interfaces and information systems. However, their success in
process-control systems development has been limited [13]. Clearly, a discussion of ev-
ery other prototyping technique is beyond the scope of this paper. Nevertheless, most
work in prototyping is, in our opinion, too close to design and implementation or is not
suitable to the problem domain of safety-critical systems.

Notable examples of work in prototyping include PSDL (36, 45] and Rapide [43, 44].
PSDL is based on reusable libraries of Ada modules which can be used to animate the
prototype. Nevertheless, it seems that this approach would preclude execution until a
fairly detailed specification was developed. Rapide is a useful prototyping system, but it
does not have the capability to integrate as easily with other tools that we desired. In
addition, Rapide’s scope is too broad for our needs; we wanted a tool-set that was focused
on the challenges presented by process-control systems.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.4. PRODUCT FAMILY ENGINEERING 15

. Boundries of the set are determined
by the Commonalilies

Individual family members ara
— —- distinguishad from one ancther by
tha values of the variabilites

.. Soma family members may
theoretically sxist, but not be buit

Figure 3.1: A simple product family

3.4 Product Family Engineering

The notion of a product family was introduced by David Parnas in [51]. According to
Parnas, it is desirable to study a group of programs as a whole whenever the programs
share extensive commonalities. Parnas observed that often programmers would create new
programs by modifying existing programs. This process usually involved a reverse step
where parts of the working program were discarded. Furthermore, the new program was
sometimes crippled by design assumptions made for the original program which did not
apply to the new program. Thus, Parnas postulated that it would better to start out by
defining what was common about all such programs and successively refining the design
until you had working programs as the leaves of a tree structure, with nodes within the
tree representing the various design decisions.

Batory and O’Mally [5] discussed how to reuse large portions of a system based on
breaking it into components and introduced a simple language for describing the compo-
nents and their composition. Gomma [18] discusses using domain modeling [56] to create a
centralized library of components which are then used by a generation facility to produce
the target application.

Weiss and Ardis [63, 2] developed the FAST (Family-oriented Abstraction, Specification
and Translation) process that integrates the above with specialized languages [49, 6] for
each domain. A similar process is mentioned by Campbell et al. in [11, 10] and also by
Lam {39, 38]. The differences between these works are primarily in the sort of artifacts
produced by domain engineering.

The commonality analysis [62] is a central feature of product-line engineering. This is
the document that notes all the commonalities, i.e., features which are present in all systems
in the domain, and variabilities, i.e., features which distinguish the different members of
the domain. The commonality analysis defines the requirements for the product line.

One way to view a product family is as a set, where the boundaries of the set are
determined by the commonalities, and the individual members of the set are distinguished
by the values of their variabilities (Figure 3.1). As the figure demonstrates, it is entirely
possible that some members of the family may theoretically exist but not yet be built

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

16 CHAPTER 3. CURRENT LIMITATIONS

(shown in gray). Furthermore, the family may be undefined at some points within the
boundaries due to, for example, illegal or nonsensical combinations of variability values.

3.5 Summary

To summarize the discussion in this chapter—no current approach satisfactorily addresses
the needs for requirements modeling and evaluation of families of safety critical systems.
Natural language does not provide the preciseness and analyzability required in this do-
main. On the other hand, many of the current formal notations are not acceptable by the
engineers and software professionals developing these systems. Partial exceptions are nota-
tions such as SCR, SpecTRM, RSML, and RSML™¢ that have has some success in practice.
These notations provide support for analysis and execution at an early stage in software
development. Therefore, they can serve as prototypes of the proposed system. In particu-
lar, RSML~*® is supported with the NIMBUS environment that is specifically developed to
support specification based prototyping.

Current work in product family engineering has been successful at achieving reuse
in limited domains. Many lines of research are helping push the current state-of-the-
art including new techniques for implementing product lines and expressing product line
architectures. In this report, we will address techniques for recording and reasoning about
the structure of the product family requirements; a topic that is inadequately addressed
by current work in the field.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 4

The System Model

In this chapter we present an overview of the model that underlies our requirements model-
ing method. The model is heavily based on traditional process control thinking—therefore,
we first present an overview of process control systems. This overview provided the back-
ground to understand why we have chosen the our underlying framework. We then discuss
two related models so that we can contrast and compare our approach to related work.
Finally, we present the FORMpcs model of systems and discuss how it is used in our
development method.

4.1 Process Control Systems

A system is a set of components working together to achieve some common purpose or
objective. A process-control system usually involves an environment (i.e., the world), a
program (or multiple programs) whose purpose it is to establish or maintain certain condi-
tions in the environment, sensors and actuators that allow the program to get information
about the environment and affect the environment, and finally the operator who can usually
input various parameters to the running program and receive feedback from the running
program. This is summarized in Figure 4.1.

Consider the environment of aircraft moving along in three dimensional space. In this
unconstrained environment, airplanes are free to have midair collisions, disrupt take-off
and landing of other aircraft, and so forth. Clearly, this is not desirable; therefore, we
need a process-control system for air traffic control that will allow us to enforce certain
restrictions in the environment, for example, that planes do not run into one another. To
do this, we will have to have some sensors, which will give us data about the position of the
aircraft in the system, some actuators which will allow us to make course corrections for
the aircraft in the system, and possibly have some operator input to guide these choices.

There are a number of difficulties in constructing process-control systems. First, the

17

18 CHAPTER 4. SYSTEM MODEL

¢— Environment re——————

Sensors Actuators

BNl
Ly

Operator

Figure 4.1: A basic process-control model

environment is a key element that is often under specified and/or misunderstood. Mis-
understandings about the environment in which the system operates have been the cause
of numerous accidents. Second, the sensors and actuators often provide an imperfect, or
noisy, view of the real world; sensors can introduce errors, and actuators can fail. There-
fore, the program may lose track of the true state of the environment and error conditions
in the sensors and actuators can be difficult (or impossible) to detect. Finally, the con-
troller often has only partial control over the process; therefore, state changes can occur in
the environment when no actuator commands were given by the program.

Besides the basic objective or function implemented by the program, process-control
systems may also have constraints on their operating conditions. Constraints may be
regarded as boundaries that define the range of conditions within which the system may
operate. Another way of thinking about constraints is that they limit the set of acceptable
designs with which the objectives may be achieved.

These constraints may arise from several sources, including quality considerations, phys-
ical limitations and equipment capacities (e.g., avoiding equipment overload in order to
reduce maintenance), process characteristics (e.g., limiting process variables to minimize
production of byproducts), and safety (i.e., avoiding hazardous states). In some systems,
the functional goal is to maintain safety, so safety is part of the overall objective as well as
potentially part of the constraints.

The behavior of the process is monitored through monitored variables (V,,) and con-
trolled by controlled variables (V). The process can be described by the process function
F,, a mapping from V,, x I, x D x t — O, x V.. Unfortunately, it is usually difficult to

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.1. PROCESS CONTROL SYSTEMS 19

derive a mathematical model of the process due to the fact that most processes are highly
nonlinear (i.e., the process characteristics depend on the level of operation), and, even at
a constant operating level, the process characteristics change with time (i.e., the process
is nonstationary). Any attempt to provide a mathematical expression describing the pro-
cess involves simplifying assumptions and therefore will be imperfect. Some of the process
characteristics, however, can be described, and this description can be used to derive and
validate the control function.

Sensors are used to monitor the actual behavior of the process by measuring the mon-
itored variables. For example, a thermometer may measure the temperature of a solvent
in a chemical process or a barometric altimeter may measure altitude of an aircraft above
sea level. The sensor function F,; maps V, x t — [.

Actuators are devices designed to manipulate the behavior of the process, e.g., valves
controlling the flow of a fluid or a pilot changing the direction and speed of an aircraft.
The actuators physically execute commands issued by the controller in order to change
the controlled variables. The functionality of the actuators is described by the actuator
function F, mapping O x t — V,,,.

The controller is an analog or digital device used to implement the control function.
The functional behavior of the controller is described by a control function (F,) mapping
I xCxt— O, where C denotes external command signals. The process may change state
not only through internal conditions and through the manipulated variables, but also by
disturbances (D) that are not subject to adjustment and control by the controller. The
general control problem is to adjust the controlled variables so as to achieve the system
goals despite disturbances.

This model is an abstraction—responsibility for implementing the control function may
actually be distributed among several components including analog devices, digital com-
puters, and humans. Furthermore, the controller most often has only partial control over
the process—state changes in the process may occur due to internal conditions in the
process or because of external disturbances or the actuators may not perform as expected.

The purpose of the control-system requirements specification is to define the system
goals and constraints, the function F, (i.e., the required blackbox behavior of the con-
troller), and the assumptions about the other components of the process-control loop that
(1) the implementors need to know in order to implement the control function correctly
and (2) the system engineers and analysts need to know in order to validate the model
against the system goals and constraints.

A blackbox, behavioral specification of the function F, uses only:

) the current process state inferred from measurements of the controlled variables,
) past process states that were measured and inferred,

) past corrective actions output from the controller, and

4) prediction of future states of the controlled process

(1
(2
(3
(

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

20 CHAPTER 4. SYSTEM MODEL

to generate the corrective actions (or current outputs) needed to maintain F.

Information about the process state has to be inferred from measurements. Theoreti-
cally, the function F, can be defined using only the true values of the controlled variables
or component states (e.g., true aircraft positions). However, at any time, the controller
has only measured values of the component states (which may be subject to time lags! or
measurement inaccuracies), and the controller must use these measured values to infer the
true conditions in the process and possibly to output corrective actions (O) to maintain
F.

This model is an abstraction—responsibility for implementing the control function may
actually be distributed among several components including analog devices, digital com-
puters, and humans. The next sections discuss elaborations of this model and what are
considered system versus software requirements.

The next sections discuss abstractions of this model and what are considered system
versus software requirements.

4.2 The Four-Variable Model and CoRE

The system model that is most closely related to the model used in this paper is the four-
variable model developed by Parnas and Madey [54], which in turn evolved out of early
efforts to specify the requirements for the A-7 aircraft in SCR [28, 27].

An overview of the four-variable model is shown in Figure 4.2. The variables in this
model are continuous functions of time and consist of monitored variables in the environ-
ment that the system responds to M, controlled variables in the environment that the
system is to control C, input variables through which the software senses the monitored
variables I, and output variables through which the software changes the controlled vari-
ables O. Note that M and C do not have to be disjoint, some environmental quantities
may be both monitored and controlled. For example, monitored values might be the actual
altitude of an aircraft and its air-speed, while the corresponding input values would be the
ARINC-429 bus words which the software reads to sense these quantities. Examples of
controlled variables might be the desired pitch and roll of the aircraft, position of a control
surface such as an aileron, or the displayed value of the altitude on the primary flight
display.

Four mathematical relations are defined between these variables. The NAT and REQ
relations describe how the controlled variables change in response to changes in the moni-
tored variables, i.e., they define the system level view of the specification. The NAT relation
defines the constraints imposed by the environment, such as the maximum rate of climb
of an aircraft based on its physical characteristics. The REQ relation imposes additional

1Time lags are delays in the system caused by the reaction time of the sensors, actuators, and the
actual process.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.2. THE FOUR-VARIABLE MODEL AND CORE 21

MON % Req > CON

ﬁ
]
F Y

IN ouT
| ’
| |
\
INPUT SOFT - OUTPUT

Figure 4.2: The four-variable model.

constraints on how the environmental quantities M and C may change. REQ defines how
the controlled variables are to respond to changes in the monitored variables—REQ defines
the required control behavior. In other words, NAT describes liow the environment behaves
in the absence of the controller to be built, while REQ describes how the environment is
to be constrained by that controller.

The model is completed by defining the IN relationship relating the monitored variables
M to the input variables I and the OUT relation relating the output variables O to the
controlled variables C, effectively modeling sensors and actuators surrounding the software.
Specification of the NAT, REQ, IN, and OUT relations define the allowable behavior of the
control software, shown in Figure 1 as SOFT, without specifying its design—from REQ),
NAT, IN, and OUT, the software relation SOFT can be derived. In addition, this separation
into relations provides a useful separation of concerns by partitioning the specification of
the hardware from the system level specification.

To augment the four variable model and support the SCR language, the CoRE (Consor-
tium Requirements Engineering) [57] methodology was produced by the Software Produc-
tivity Consortium (SPC). Many talented people contributed to the development of CoRE
and it contains many valuable ideas for the development of process-control systems. In
particular, The CoRE guidebook [57] provides technical information on how to document
the environmental variables and how they fit into the four-variable model, and they provide
some guidance on which environmental quantities are suitable candidates as monitored and
controlled variables.

The CoRE process begins with the system requirements and ends with a software

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

22 CHAPTER 4. SYSTEM MODEL

requirements specification. The overall CoRE process is divided up into five main phases:

1. Identify Environmental Variables: In this phase, the specifiers identify envi-
ronmental quantities that the software can monitor and control. Environmental
constraints, i.e. constraints which would exist without the presence of the system,
are defined; this is called the NAT relation. Finally, the structure of the system is
represented as an entity-relationship (ER) diagram.

2. Preliminary Behavior Specification: In this phase, a first draft of the high-level
behavioral specification, the REQ relation, is developed. The decision is made as
to which environmental quantities are monitored, controlled, or both. The domains
of the controlled functions are defined and the monitored variables which effect the
value of the controlled variable are recorded. Finally, the number and type of mode
machines needed is decided.

3. Class Structuring: In this phase, the structure of the system is decided. The CoRE
methodology attempts to support a pseudo-object oriented structuring technique
which includes specialization and generalization. The primary structuring guidance
is to choose the objects based on the physical structure of the system and as an
extension to the ER diagram developed in the first phase.

4. Detailed Behavior Specification: This phase culminates in the completion of the
behavioral specification of the classes identified in the previous phase. The controlled
variable functions are completely defined and the other classes are refined. Timing
constraints, in terms of when each mode machine is recomputed, are also addressed.

5. Define Hardware Interface: In this phase, the characteristics of the sensors and
actuators are defined by defining the IN and OUT relations.

In practice, the developer must iterate between these phases of the CoRE methodol-
ogy rather than proceeding through them in a waterfall-like fashion. The CoRE manual
addresses this iterative nature in and provides an overview of both the ideal and the in-
teractive (realistic) development process. This enables CoRE to provide both guidelines
on what should be contained in the specification as well as how the specification should be
developed. CoRE further addresses the how question by providing entry and exit criteria
for each of the key steps in the model.

CoRE includes many good ideas and suggestions for developers. The guidelines on
identifying the monitored and controlled variables for the system are useful in focusing the
construction of the REQ relation. Also valuable is the process of developing a dependency
tree for the monitored and controlled variables early in the specification life cycle. This
helps to clarify thinking and avoids circular dependencies, which are not permitted in SCR

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.2. THE FOUR-VARIABLE MODEL AND CORE 23

and not recommended by Parnas [52]. Finally, the overall process is good and provides
important guidance to specification developers on how to proceed with the development
effort and what information should be included at the various stages. These guidelines
provide some help, but in our experience more guidance is needed to correctly make the
crucially important selection and classification of the environmental variables.

4.2.1 Discussion

The four variable model has served as the foundation for several research efforts. Most
notably, the work at the Naval research Laboratory on the SCR notation [28, 27, 25, 24, 26]
and at the University of Minnesota in their work on specification-based prototyping [59)].

The main problems encountered when applying the four-variable model are (1) diffi-
culty in identifying appropriate monitored and controlled variables and (2) the difficulty
in refining the requirements (REQ, NAT, IN, and OUT) to the SOFT relation. These
problems are not fundamental to the model—there are simply no appropriate guidelines
available for these two activities.

Identify environmental variables: The guidelines available for this activity are not
sufficient for the practitioner. In [54], the originators of the four-variable model state

The environmental quantities include: physical properties (such as temperature
and pressure), the readings on user visible displays, administrative information
(such as the number of people assigned to a given task), and even the wishes of
a human user.

In a footnote, they provide some additional guidance:

Frequently, it is not possible to monitor or control exactly the variables of in-
terest to the user. Instead one must monitor or control other variables whose
values are related to the variable of real interest. Usually, one obtains the
clearest and simplest document by writing them in the terms of the variables
of interest to the user in spite of the fact that the system will monitor other
variables in order to determine the value of those mentioned in the document.

The CoRE guidebook [57] provides technical information on how to document the
environmental variables and how they fit into the four-variable model, and they provide
some guidance on which environmental quantities are suitable candidates as monitored and
controlled variables. From the CoRE guidebook [57]:

e Variable properties of physical objects in the problem scope, e.g., positions, velocities,
and temperatures.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

24 CHAPTER 4. SYSTEM MODEL

e Physical quantities, such as dimensions of physical objects.

o Information passed across the interfaces of physical devices, e.g., device status or de-
vice commands. Environmental variables typically abstract the interfaces of physical
devices. We look at physical devices because they give us insight into which physical
quantities the software system can monitor and control.

o Information provided by or supplied to a human user, e.g., user commands or user
displays.

e Undesired events, e.g., failures of components of the system or the software system
itself, to which the software system is required to respond.

These guidelines provide some help, bet in our experience, more guidance is needed
to correctly make the crucially important selection and classification of the environmental
variables.

Refinement to SOFT: Assuming we have captured the relations REQ, NAT, IN, and
OUT, we need to derive the SOFT relation. There is preciously little guidance in the
CoRE guidebook as well as in the original work on how to achieve this task. This is, in our
opinion, a serious shortcoming which we attempt to address in the FORMpcs method.

Finally, this basic paradigm of the four-variable model was extended by the Software
Productivity Consortium to use object-oriented concepts to make the specification robust
in the face of change and to support product families [8], [9], [10]. These extensions were
briefly discussed in the previous chapter and will not be covered further in this guide
book—we provide an entirely new structuring approach in this guide.

4.3 The WRSPM Model and REVEAL

Michael Jackson and Pamela Zave have presented a reference model for requirements
specifications—the world-machine model [30, 32, 33, 66]. The discussion in this section
is based on the formalization of this model provided by Gunter, Gunter, Jackson, and
Zave [19].

The main idea behind the world-machine model is a separation of concerns between the
world (or the environment) and the machine (or, the system to be built). Jackson et al.
state that the requirements and problems exist in the world, because it is the world that
we wish to change via the introduction of the machine. Thus the WRSPM is based on five
artifacts grouped roughly into two categories—the ones relating mostly to the environment
(or world) and those that pertain mostly to the computer and software (or the machine).
These artifacts are denoted by W, R, S, P, and M as illustrated in Figure 4.3. The artifacts
are:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.3. THE WRSPM MODEL AND REVEAL 25

Environment System

(G

O visibility O control

Figure 4.3: The world, requirements, specification, program, and machine (WRSPM)
model.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

26 CHAPTER 4. SYSTEM MODEL

The World (W): This is domain knowledge that captures knowledge of environmental
facts.

The Requirements (R): Describes what the customer need from the system expressed
in terms of its effect on the environment.

The Specification (S): A less abstract description of the desired behavior that provides
enough information for a software developer to design and implement a system that
satisfies the requirements.

The Program (P): The program (implemented in some programming language) that
implements the specification and runs on some machine.

The Machine (M): The system (computer, associated hardware, operating system, etc.)
that executes the program.

Variables that belong in the world are collectively called e—the ones belonging in the
machine are called s. The variables in the world e are split into two mutually exclusive
sets ey, and e,—the variables in e; are hidden from the system and are considered to be
exclusively in the domain of the environment. The variables in e, are visible to both the
environment and the system. The variables in s are decomposed in a similar way into s,
and s, where all variables in s are hidden from the environment.

With this decomposition of the variables, e, e,, and s, are visible to the environment
and used in W and R. Variables in e,, s,, and s, are visible to the system and used in
P and M. The only variables shared between the environment and the system are in e,
and s,—therefore, the specification S is restricted to use only variables in e, and s, and
they form the interface between the environment and the system. Figure 4.3 (from [19])
illustrates the relationship between the variables and the various artifacts.

The WRSPM is related to the four-variable model discussed in the previous section.
W corresponds to NAT in the four-variable model. R corresponds to REQ. In the four
variable model, REQ and NAT are somewhat more restrictive than W and R in that
it can seemingly only make assertions about the variables that are shared between the
environment and the system. W and R allow us to make statements about variables that
are hidden from the system (ep). SOFT corresponds to P, and IN and OUT together
correspond to M.

The real difference between these two models is in the consistency and sufficiency
constraints imposed on these various relations. We will not consider these technical details
further in this guide—the interested reader is referred to [19] for a detailed discussion.

The WRSPM model is intended as a reference model only and does not discuss how
the various variables in e and s are selected. Nor does the method discuss how the vari-
ous artifacts are derived or structured—this is a pure reference that simply discusses the
required relationship between these different artifacts.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.3. THE WRSPM MODEL AND REVEAL 27

The REVEAL methodology [55] was developed by Praxis Critical Systems, Limited as
a method based on the world-machine model. REVEAL consists of six stages:

1. Defining the Problem Context: In this stage the goal is to develop an under-
standing of the problem (i.e., what it is about the world that you wish the system to
help to achieve) and explore the boundaries of the problem.

2. Identifying Stake holders and Eliciting Requirements: This second stage is
associated with identifying stake holders to the project and eliciting requirements
and domain knowledge.

3. Analyzing and Writing: In the third stage, the requirements and domain knowl-
edge are written down and analyzed using the completeness criteria of the WRSPM
model.

4. Verification and Validation: The fourth stage involves checking the work that
was done in the first three stages to ensure its accuracy.

5. Use: After the fourth stage, the requirements will be used throughout the rest of
the development life cycle.

6. Maintenance: Should any changes to the requirements be discovered, then we
must perform maintenance on the description. This is discussed in the final stage of
REVEAL.

The REVEAL methodology is based on two key processes: (1) conflict management,
and (2) managing requirements. The work in REVEAL on managing requirements is the
most relevant to this work.

REVEAL implements a unique notion of traceability of the requirements based on the
WRSPM model. In the WRSPM model the requirements are satisfied when the World
(W), and the Specification (S) imply the requirements. That is,

W,SER

This concept is referred to as the Adequacy Check by the REVEAL method. REVEAL
uses the adequacy check as a basis for the entire requirements process.

Suppose, for example, that we start out writing down the general requirements for a
system that we are building. We would record these requirements, Rge,, along with a
description of the World, W, and specification, S. Then, we demonstrate that W, S+ Rgep,
and life is good.

Now we want to introduce more detail to Ry, and produce a set of requirements
at a lower level of abstraction. Of course, the detailed requirements, Rg4,, are certainly

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

28 CHAPTER 4. SYSTEM MODEL

related to Ry, and certainly that relationship should be preserved in the requirements
documentation. Thus in REVEAL, we would prove the property:

W, Rdet F Rgen

then, by transitivity, we can reuse the original adequacy check on the general requirements
so show that the requirements are still satisfied. Doing this provides traceability to the
high-level requirements from the detailed requirements and ensures that if the high-level
requirements change, the proofs for the detailed requirements will no longer work (as you
would expect). This notion of traceability is similar to that proposed by Leveson [17, 40]
for Intent Specifications except that in REVEAL the traceability is organized around a
more formal framework.

The traceability information recorded by the REVEAL methodology combined with
its use of the WRSPM system model make REVEAL a good complement to the CoRE
methodology that we discussed earlier. However, a combination of REVEAL and CoRE
would still not serve the needs of practitioners because neither methodology adequately
addresses the issues associated with recording the requirements for product families. Fur-
thermore, REVEAL does not address specifically the issues associated with state-based
specification of process-control systems in a formal language (as CoRE does).

4.4 The FORMpcs More Variable Model

There are variations of the four-variable model that are useful on occasion. For example, it
may be helpful to layer the IN and OUT relations into levels much like the ISO Reference
Model for communication protocols. Another variation is to ”glue” the controlled variables
of one or more models to the monitored variables of another model to create a larger system
specification or to split a large model up into several smaller models (although care must
be taken not to fall into the trap of introducing implementation bias). However, Figure 4.4
depicts the basic paradigm and is adequate for the current discussion.

One problem (or advantage) with the traditional four variable model shown in Fig-
ure 4.2 is that it leaves the software developer with the question of how to structure an
implementation of SOFT, i.e., how to write the software. One appealing approach is to
"stretch” SOFT into the relations IN’, REQ’, and OUT’ as shown in Figure 4.4. In this
figure, IN' and OUT’ are nothing more than a collection of hardware interface routines
designed to isolate the software from changes in the hardware. This conceptual view cre-
ates a virtual image of the MON and the CON variables in software, an approach often
advocated in object-oriented design methods.

Decomposing the software in this way has several benefits. First, if MON and CON are
chosen correctly, the portion of the software specified by IN” will change only as the input
hardware changes. Likewise, the portion of the software specified by OUT’ will change

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.4.

THE FORMpcs MORE VARIABLE MODEL 29

e

\ MON = il —% con/
\ . | \\ ///, A/"/
MON' REQ' 7/ CON'
4] \ e
IN ouT
IN' ouTt'
\/
INPUT — -~ SOFT + output

Figure 4.4: The FORMpcg system model adapted from [48, 59]

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

30 CHAPTER 4. SYSTEM MODEL

only as the output hardware changes. In a similar fashion, the portion of the software
specified by REQ’ will be isolated from hardware changes and will change only in response
to changes in REQ, the system requirements. Since customer driven changes and hardware
driven changes arise for different reasons, this helps to make the software more robust in the
face of change, partially addressing the issues of requirements volatility identified earlier.
It also greatly simplifies tracing the system requirements to the software requirements.

Of course, it is important to note that MON’ and CON’ are not the same as the system
level variables represented by MON and CON. Small differences in value are introduced
both by the hardware and the software. Differences in timing are introduced when sensing
and setting the input and output variables. For example, the value of an aircraft’s altitude
created in software is always going to lag behind and differ somewhat from the aircraft’s
true altitude. In safety-critical applications, the existence of these differences must be
taken into account. However, if they are well within the tolerances of the system, the
paradigm of Figure 4.4 provides a natural conceptual model relating the system and the
software requirements. This directly addresses the issue of integrating systems and software
engineering identified earlier.

Frequently, it is not possible to monitor or control exactly the variables of in-
terest to the user. Instead one must monitor or control other variables whose
values are related to the wvariable of veal interest. Usually, one obtains the
clearest and simplest document by writing them in the terms of the variables
of interest to the user in spite of the fact that the system will monitor other
variables in order to determine the value of those mentioned in the document.

The specification starts as a high-level model of the system requirements (i.e., the REQ
relation). This model is is then iteratively refined, adding more detail as the system
becomes better understood. During each iteration, if a formal, executable specification
language is used, the specification is executable and can therefore be used as the proto-
type of the proposed system. Eventually, the system requirements will be well-defined
and the system engineer must allocate requirements to particular hardware and software
components within the system. At that point, the system requirements can be refined to
the software requirements by adding descriptions pertaining to the actual hardware with
which the software must interact.

From the start of the modeling effort, we know that we will not be able to directly
access the monitored and controlled variables—we must use sensors and actuators. At
this early stage, we may not know exactly what hardware will be used for sensors and
actuators; but, we do know that we must use something and we may as well prepare for
it. By simply encapsulating the monitored and controlled variables we can get a model
that is essentially isomorphic to the requirements model; the only difference is that this
model is more suited for the refinement steps that will follow as the surrounding system is
completed.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.4. THE FORMpcs MORE VARIABLE MODEL 31

MON' —REQ' 9 CON'

A

MON' —REQ' 9 CON'

MON —REQ'» CON % o{r |:> IN' our

MON & CON &
INPUT OUTPUT

v

INPUT OUTPUT

Figure 4.5: Refining REQ to SOFT

The method of this encapsulation differs depending on the language used. If the lan-
guage does not have a modularity construct, then extra variables or functions can be intro-
duced in the specification to isolate the REQ’ behavior from the hardware specification. If
the language does have a modularity construct, the specifier may choose to define a module
that computes the REQ’ relation and then the module’s interface naturally provides the
encapsulation.

As the hardware components of the system are defined (either developed in house or
procured), the IN and OUT relations can be rigorously specified. Figure 4.5 shows a high-
level view of the refinement process. At the far left of the figure, we start the process with
just a notion of the REQ’ relation and evaluate REQ’ with the monitored and controlled
variables (we basically assume that the sensors and actuators are perfect-there are no
delays or noise). Next, we move into an intermediate stage as we add more and more
detail to the IN” and OUT’ relations. During this stage, the specifications for some sensors
and actuators might be completely finished while the specifications of others are under
development; this is the reason that both MON and INPUT are noted as the sources for
the IN’ relation (and similarly for the OQUT’ relation). Finally, we will arrive at a complete
specification of both the IN’ and OUT"’ relations, shown at the far right of the figure.

We have shown in the abstract how the SOFT relation should be structured and our
conception of the process that should be used to refine the REQ relation to the SOFT
relation. In the next sections, we illustrate this approach by applying it to the ASW and
the Mobile Robotics examples.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

32 CHAPTER 4. SYSTEM MODEL

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 5

Product-Line Engineering Concepts

Today’s consumers want devices and systems custom fitted to their needs. Software
product-line engineering has the potential to deliver great cost savings and productivity
gains to organizations that provide families of products, as well as give those organizations
a competitive edge in the market-place. For safety-critical systems, software-product line
engineering has the potential to produce systems that are more safe than their serially
produced counterparts while being cheaper and faster overall to build.

Even if the goal of the development effort is to the production of a product family,
techniques oriented towards product families may still be used to provide for increased
flexibility in the long term. One can view the iterative version of a program which are
produced through maintenance as a product family.

The commonality analysis [62] is the document which describes the product family. Any
product family may be described by listing its commonalities, i.e., those features which are
shared by all members of the families, and its variabilities, i.e., those features which are
allowed to vary accross members of the family.

One way to view a product family is as a set, where the boundaries of the set are
determined by the commonalities, and the individual members of the set are distinguished
by the values of their variabilities (Figure 5.1). As the figure demonstrates, it is entirely
possible that some members of the family may theoretically exist but not yet be built
(shown in gray). Furthermore, the family may be undefined at some points within the
boundaries due to, for example, illegal or nonsensical combinations of variability values.

A family where all the variabilities have a sensical value for all family members, a
single product family may work for the entire domain. These sorts of families are most
commonly used as examples of product family engineering. However, for many families
some variabilities do not have a sensible value for all family members; instead, whether
or not a particular variability has a sensical value may depend on the values choosen for
other variabilities. In this way, the choice of the second variability is effected by the choice
of the first; this can be viewed as a hierarchical relationship between these variabilities.

33

34 CHAPTER 5. PRODUCT-LINE ENGINEERING CONCEPTS

Boundnies of the set are determinad
by the Commonalilias

Individual family members are
distingutshed from one another by
Lhe values of the variabilities

____ Some famity members may
theoretically axist, but not be built

Figure 5.1: A simple product family

Furthermore, many product families contain multiple dimensions; that is, many families
have groups of related

5.1 n-Dimensional and Hierarchical Product Lines

Current techniques for product-line engineering work well if the following conditions are
met:

e The systems in the family share significant commonalities, and

e The variabilities which define each family member have a straightforward decision
model, i.e., it does not require many complicated rules to describe how the variability
values are assigned to produce each family member.

The first point describes the essential feature of product families that Parnas noticed in his
work. However, the second point originates in the practical experience of many researchers
who have labored to construct software product-lines. Robyn Lutz observed that the
primary limitations of the product family approach stem from difficulties in handling “near-
commonalities and relationships among the variabilities” [emphasis added] {47]. Thus, the
more simple the relationships among the variabilities, the easier it is to construct the
product family.

5.1.1 n-Dimensional product families

Attempts have been made to organize the product family requirements in a hierarchical
fashion [47, 51, 37, 38]. Lutz noted in her attempt to organize the variabilities into a
tree that “there were several possible trees, with often no compelling reason to select one
possible tree over another” [47).

Brownsword and Clements present a shipboard command and control systems family
which contained 3000-5000 parameters of variation for each ship [9]. They state that
“the multitude of configuration parameters raises an issue which may well warrant serious

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.1. N-DIMENSIONAL AND HIERARCHICAL PRODUCT LINES 35

Flying Craft FGS
A T
Fixed Wing Helicopter Tilt-Rotor
FGS FGS FGS

Figure 5.2: FGS product family covering flying craft

attention.” In addition, they present three different views of the architectural layering of
the base system that “do not conflict with each other; rather they provide complementary
explanations of the same ideas.”

Both these examples, as well as our own experience in the domain of mobile robotics,
illustrate the fact that often a product family is multi-dimensional; therefore, a hierarchical
decomposition is not sufficient to capture the structure of the domain. We call such domains
n-dimensional product families.

5.1.2 Hierarchical product families

Suppose that a company wished to construct a flight guidance system (FGS) for both
fixed-wing aircraft and helicopters!. The FGS is responsible for issuing commands that
keep the aircraft level, cause it to climb or descend, and so forth. Furthermore, the FGS
must interact with other airborne systems. Many of the tasks that the system has to per-
form might be common across these two radically different aircraft: interaction with other
systems, deciding to level off at a particular altitude, mode transition logic related to when
it is legal to switch between the various operating modes. Therefore, many requirements
between these two systems will be the same, or very similar. Nevertheless, the actual
control of the aircraft is very different. Therefore, developing a single set of commonalities
and variabilities which span this entire domain is difficult.

Some would argue that this difficulty stems from the fact that the family is simply too
diverse to be considered a product line. However, it is clear that these systems share much
in common, which was the original, and in our view the most important, criterion for being
a family. Thus, we propose the concept of a hierarchical product family.

Most previous attempts at product family structuring have focused on hierarchically
grouping the variabilities while the commonalities remain the same for all family mem-
bers [47, 38]. Notable exceptions are Parnas [51] and Brownsword and Clements who

‘noted in their case study at CelciusTech [9] that sometimes product-lines exist within the
main product line. However, Parnas’ work is based heavily on design and coding choices;

1We would like to thank Steven P. Miller of Rockwell-Collins Inc. for this example

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

36 CHAPTER 5. PRODUCT-LINE ENGINEERING CONCEPTS

(a) (d)

Figure 5.3: Hierarchical decomposition and subset structure

therefore, it is difficult to apply to requirements. Brownsword and Clements mention this
phenomenon in passing and apply it in a more limited way than what we advocate.

In our approach, additional commonalities which are unrelated to the parent product
family can be added in the sub-families. The hierarchical decomposition of the FGS family
is shown in Figure 5.2. Thus, the helicopter sub-family can have significantly different
requirements than for fixed-wing aircraft, yet share many things in common as well.

This will eventually effect the architecture and structure of the systems. For example,
the product of the domain engineering for the parent family, Flying Craft FGS, might be
a set of reusable components, whereas the product of domain engineering for the children
might be a reference architecture or generation facility. The architectures for the fixed-
wing aircraft and the helicopters could differ significantly and use the components from
the parent family in different ways.

By structuring the requirements in this way, we have avoided imposing restrictive design
constraints on the family members and instead focus on the structure of the domain itself.
Furthermore, should the company wish to start building FGS systems for an entirely new
set of aircraft, for example, tilt-rotor aircraft, this could be done while reusing many aspects
of the FGS systems already implemented. This is also shown in Figure 5.2.

5.2 Structuring Families

This section describes how set theory can be used to think about structuring product
families. The most basic structure that can be represented with the set theoretic approach
is the subset. Figure 5.3 shows a product family, A, which has been divided into two
subsets, B and C. Furthermore, C has been further divided into subsets D and E. This
corresponds to a hierarchical decomposition of the family.

Consider a member of family E, e;. The member e; must have all the commonalities

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.2. STRUCTURING FAMILIES 37

Figure 5.4: Abstract verses non-abstract families

defined for E as well as have some values for all the variabilities in E. Furthermore, because
E is a subset of C and A, e, is also a member of families C and A. The general definition
for any family E which is a subset of another family C is as follows:

¢ E must include all of the commonalities in C.

e E must include all of the variabilities in C; however, E may restrict the range or
options available in the variabilities.

e E can add additional commonalities which are not present in C as long as the ad-
ditional commonalities do not conflict with the commonalities or variabilities in C.
These new commonalities might come from a refinement of variabilities in C or might
be completely unrelated.

e E can define additional variabilities which are not present in C as long as those
variabilities do not conflict with the above.

The first criterion is straightforward and necessary for the subset E to be completely
contained within C. The second criterion defines the fact that E may wish to refine or
restrict the values of the variabilities of C. For example, in the mobile robotics domain, a
variability across the entire domain might be that the maximum speed of the mobile robot
can vary from one to five miles per hour. However, subsets might define a lesser maximum
speed depending on the hardware involved. It is possible for this refinement to result
in an additional commonality, for example, a subset that instantiates a boolean choice
variability to a particular value. Additional commonalities can also be added which are
unrelated to the parent family. For example, it is likely that the family of helicopters will
need different commonalities than the family of fixed-wing aircraft. Finally, it is possible
to add additional variabilities.

The two cases of hierarchical decomposition are shown in Figure 5.4. Part (a) of the
figure demonstrates that the family R need not have any members that only exist in R.
In a sense, R is an abstract family, because any member of R must be either a member
of S or a member of T. This is similar to our FGS example from earlier, where all family
members are either helicopters or fixed-wing aircraft and it does not make sense to talk

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

38 CHAPTER 5. PRODUCT-LINE ENGINEERING CONCEPTS

o) b)
Figure 5.5: Set intersection and non-hierarchical structure

about member which are only of the parent family. However, this need not be the case, as
Figure 5.4(b) demonstrates.

Another structure that can be represented using a set-theoretic approach is that of set
intersection. The ability to represent a set intersection distinguishes this approach from
the purely hierarchical structures which have been applied by others. This is shown in
Figure 5.5.

Consider a member, m; of M. By definition, m; is also a member of families K, L,
and J. Thus, m; must have all the commonalities of both K and L. In addition, M is a
subfamily of both families K and L (this is shown in the figure). The constraints on any
family M which is a subset of families K and L are as follows:

M must include all the commonalities of both K and L.

e M must include all the variabilities of both K and L; however, it may restrict those
variabilities as above for subsets.
e M may introduce additional commonalities which are not present in either K or L.

e M may introduce additional variabilities which are not present in either K or L.

These structures can be used to document and reason about the two problems explored
in the previous section; they can be used to describe product families which are both
n-dimensional and hierarchical.

5.3 Addressing existing issues

This section describes how our approach can assist with well-known documented issues in
product-line engineering. We describe how our structuring method can deal with near-
commonalities as well as variability dependencies.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.3. ADDRESSING EXISTING ISSUES 39

Figure 5.6: Set representation of a near-commonality

Near-commonalities: A near-commonality (NC) is a commonality which is true for
almost all (e.g., all except one) member of the product family. Lutz states that in her
experience near commonalities “frequently had to be modeled” [47]. One solution for
near commonalities is to model them as variabilities; however, this is, in some sense, a
misrepresentation of their basic properties. The solution that Lutz advises is to model it
as a constrained commonality of the form “If not member n then NC;.” However, a complex
domain might contain numerous constrained commonalities with conditions significantly
more complex than the example just mentioned.

Figure 5.6 shows how a near-commonality is represented in our approach. The near
commonality, NC;, would simply be a property of family Q (and not of P). Thus, the
commonality naturally does not apply to n. a member of only P but does apply to any
member of Q. This has several advantages. First, NC; is now a pure commonality of
Q. Second, if another member of the family is introduced with reduced functionality [47]
it need only be added as a member of P and Q may remain untouched. Finally, the
subset structure can act as a guide in determining that certain components in the eventual
application engineering environment will not be needed for n,

Dependencies among options: In [47], Lutz cites modeling dependencies among op-
tions as one issues that must be addressed in product family engineering effort. A depen-
dency is typically a constraint among the variabilities, for example, if variability V, has
value B then variability V, must have option C. Ardis recommends treating this constraint
as a commonality. However, in our experience, without some additional structuring, the
domain could become littered with such commonalities; in addition, it may not be clear
given a set of constraints whether or not a particular variability is viable.

In our approach, we can also represent constraints like these as commonalities. However,
we isolate them into logical groups by forming different subfamilies so that their numbers
do not become overwhelming. In the abstract example given above, a set would be defined
where “V has option B” and “V, has option C” are both commonalities.

In this section, we have discussed how our approach can help deal with existing issues
which have been raised in the literature regarding product families. In the next section,

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

40 CHAPTER 5. PRODUCT-LINE ENGINEERING CONCEPTS

we go on to describe how this structuring mechanism can help deal with more difficult
product families illustrated with an example in the mobile robotics domain.

5.4 Benefits

The structuring technique presented results in the creation of more families within the
domain than with a traditional approach. However, these sub-families are more cohesive
and simpler than would be the case if we created just one top level-family. We believe
that this provides several benefits. First, the top-level family can now be much broader
than was previously possible. Second, the overall family can be expanded and contracted
by adding and subtracting sub-families. Finally, these techniques will allow a family to be
more easily refactored as the definition of the family evolves over time.

The ability to draw a larger product family was an essential requirement for the struc-
turing technique. This grows out of our own experiences with mobile robotics [14], where
we had difficulty in applying the product family approach. This difficulty stems from the
fact that the mobile robotics domain is both n-dimensional and hierarchical.

The mobile robotics domain breaks down along two clear dimensions: the hardware
platform and the desired behavior. Each hardware platform conforms to a basic specifica-
tion: it can move forward and backward, turn left and right, sense whether or not an object
is in front of it. The hardware platform may also be equipped with a variety of sensors
and actuators that give it additional capabilities; and, the various sensors differ greatly in
the speed and accuracy with which they provide information. Thus, on the hardware side,
there are many different configurations that must be modeled.

On the behavior side, we can imagine that a basic behavior might be a random ex-
ploration where the primary goal of the robot is collision avoidance and recovery. More
complex behaviors can be added, for example, wall following, going through doors, and
finding particular objects. Furthermore, those behaviors may be composed and combined
to form a composite behavior. We might envision a behavior which includes the door
navigation, a wall following behavior, and a high-level planner. The high-level planning
behavior needs to communicate with the random exploration, door navigation, and wall
following to direct the robot towards high-level goals. However, if the robot collides with
an obstacle, then the lower level behavior will take over and recover from the collision.
Thus structure of the behavioral dimension is much different from the hardware dimension
and resembles Brooks’ subsumptive architecture [8].

Certainly, a domain such as mobile robotics which absolutely requires n-dimensional
and hierarchical product families will necessarily be more complex than a domain that
does not require these techniques. Nevertheless, any domain can benefit from reuse of the
artifacts at the top of the family hierarchy and a more traditional cost-benefit will exist
towards the leaves of the family (along each particular dimension).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.4. BENEFITS 41

Figure 5.7: Cost-benefit of the FGS Family

Another benefit of the technique is the ability to expand and contract the family as
necessary. This ability is essential because it allows a more incremental development of
product-lines than is facilitated by current approaches. Furthermore, it facilitates family
refactoring; that is, the family can be redefined more easily as the product line evolves
over time. Thus, this structuring technique has much potential to increase the usefulness
of the product family approach.

One of the barriers to traditional product family approaches is that the whole organi-
zation must change to accommodate product-line oriented development. Many resources
are required to develop the domain engineering support for the entire product line while
at the same time continuing to produce products for existing customers. Qur approach
allows an organization to start out with a high-level product family and reuse just a few
key pieces between the major product areas. As the payoff from this reuse makes more
organizations resources available, the organization can then afford to make the family more
rich (by refactoring and/or adding sub-families) and thus achieving more payoff from the
effort.

Of course, these benefits do not come for free. The broader and more flexible view of
product families allowed by our techniques will result in families which are more complex
than traditional familics. In addition, because of this broader view, it may be more difficult
to determine what constitutes a viable family under our approach. Almost anything is
related in some fashion or other and it may be difficult for organizations to decide when to
define an encompassing family for a particular group of subfamilies. Nevertheless, we feel
that these techniques hold promise and may serve to advance the frontiers of product-line
engineering.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

42 CHAPTER 5. PRODUCT-LINE ENGINEERING CONCEPTS

The cost-benefit analysis of our product-line engineering approach is more difficult
because one must not only consider the cost of developing domain engineering support of
the particular sub-family in which the member resides, but also all sub-families above that
one in the product family hierarchy. For example, the cost-benefits for the FGS family
is shown in Figure 5.7. The payoff for the fixed-wing FGS is shown by the thick black
line and the payoff for the helicopter FGS family is shown by the thick gray line. As the
figure demonstrates, the payoff point for the two sub-families is different, because the cost
of implementing each over and above the functionality provided by the flying craft FGS
family is different. As the structure of the family becomes more complex, for example,
through the creation of a deeper hierarchies and/or the use of multiple dimensions with
constraints between them, this relationship will become more complex.

UNIVERSITY OF MINNESOTA - Draft produced on September 29, 2002

Chapter 6

The Methodology at a Glance

Now that we have setup the background of what problems there are in requirements en-
gineering and presented several different models that help analysts think about the re-
quirements for families of embedded systems, this chapter presents and overview of the
FORM pcs methodology, which is the subject of the remainder of this report.

We begin by discussing FORM p¢g in an idealized setting where the specifier always has
all the correct information necessary to make correct decisions at each stage of the process.
Often, however, this is not the case [53]. Thus, the idealized process is not necessarily a
realistic one. Neverthess, the requirements document, to be useful, should be organized
according to the idealized process.

The second half of this chapter deals with the desparity between the realistic process and
the idealized process by noting the common says in which one typically iterates between the
activities of FORMpcg. This organization is similar to that of the CoRE methodology (57].

6.1 Idealized FORMpcs Process

This section describes the idealized FORMpcg process activities. Each subsection below
describes a phase of the methodology, begining with the commonality analysis and ending
with the specification related to the sensors and actuators in the final, physical system.
Along the way, we will define environmental quantities and operator set points, develop
an overall structure for the requirements and then develop a draft specification, finally,
we will refine that specification (adding, for example, error handling and fault recovery
behaviors).

43

44 CHAPTER 6. METHODOLOGY AT A GLANCE

6.1.1 Commonality Analysis

The commonality analysis is the first phase of the methodology. The commonality anal-
ysis begins with a short (i.e., one to 5 paragraphs) high-level description of the intended
family. This high-level paragraph is then refined until the analyst can begin to identify
the commonalities, i.e., those features which are present in all family members, and the
variabilities, i.e, those features which vary accross members of the family. This initial set
of commonalities and variabilities forms the basis for the rest of the process.

In the FORMpcs approach, we allow a family to be broken down along different di-
mensions, for example, a hardware dimension and a behavioral diminesion. In addition, we
allow a family to be broken into several sub-families, for example, a general family of fly-
ing craft might be broken down into fixed-wing aircraft and helicopters. This family-level
structuring occurs as a result of discovering additional commonalities and variabilities dur-
ing the commonality analysis. Finally, we will examine the commonalities and variabilities
in terms of whether they apply to the REQ relation or whether they apply to the IN" or
OUT’ relations.

At the end of the commonality analysis, you will have a description of the family
including all the sub-families and dimensions involved; and, you will have a subset of the
commonalities and variabilities that you will use to specify the REQ relation in the next
stages.

6.1.2 Environmental Variables

In the environmental variables phase, the goal is to identify quantities in the environment
that are important to the specification. Earlier, we discussed several models of viewing
the system’s interaction with the environment, including our own more variabile model.
This phase of the methodology provides concrete guidance on how to choose monitored
and controled quantities. In addition, this section will demonstrate the characteristics of
the various types of environmental variables.

At the end of this phase, you will have a list of all the monitored and controlled variables
used in the system cataloged according to thier type. This will form the boundaries of the
REQ relation. Furthermore, you will have a statement of the NAT relation, i.e., a statement
of the constraints that are imposed upon the environmental variables in the absence of the
proposed system(s).

6.1.3 Initial Structure

In the initial structure phase, you will use the environmental variable descriptions devel-
oped in the previous phase along with the product family structure identified in the first
phase to develop an initial structure of the REQ relation. In languages which support

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

6.1. IDEALIZED FORMpcs PROCESS 45

a module construct, specification entities may be grouped together into pieces that can
be reused accross the product family. In languages that do not support a module con-
struct, specification pieces can be formed by textual delimitation and physical grouping.
Component reuse can be accomplished by cut-and-paste.

The outcome of the this phase phase will be that the REQ relation is divided into a
series of manageable pieces each of which will be specified in detail in the next phase of
the methodology.

6.1.4 Draft Specification

In this phase, a preliminary behavioral specification of the system requirements is devel-
oped. This first version of the specification will deal primarily with the intended, normal
case behavior. While, failure modes and fault tolerance must be kept in mind, these char-
acteristics will be added to the specification in later stages. This phase concentrates on
refining the module definitions developed in the previous stage into working pieces of the
specification. When all the modules have been defined, then the specification is complete.

The outcome of the draft specification is a document which can be reviewed so that
all interested parties can agree on the essential behavior of the REQ relation without
getting bogged down in details about particular sensors and actuators, or about complex
failure modes and error handling. Using RSML™¢ with the NIMBUS environment, it is
possible to simulate the high-level behavior at this point; therefore, everyone involved on
the specification effort can get a very good idea of the behavior that was specified.

6.1.5 Detailed Requirements

When producing the Detailed Requirements, the analyst will begin to add to the REQ
relation all things that were initially left out of the preliminary behavioral specification. In
this phase, we will consider the fault tolerance of the specification, error conditions which
may arrise due to the fact that we are using sensors and actutors, and so forth. Also,
hear is where we need to consider in more detail the startup and shutdown behavior of the
system.

As these new behaviors are added, we may find it necessary to revisit decisions which
were made about the preliminary specification as well as about the requirements structure.
Thus, it is natural to iterate between these phases.

At this point, the analysts should start to analyze and/or test the completeness and
consistency of the REQ specification. Therefore, if analysis tools are available, the REQ
specification should be run through these tools and any errors which are found should be
corrected.

The outcome of this phase is a completed specification of REQ.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

46 CHAPTER 6. METHODOLOGY AT A GLANCE

6.1.6 Sensors and Actuators

Phases two through five have illustrate how to move from the commonality analysis in
phase one to a completed REQ specifiation. In this final phase, the process will be repeated
for the IN’ and OUT’ phases. In discussing this phase, we point out which parts of the
process are generalizable and what information needs to be considered specificially for the
hardware.

The outcome of this phase is the completed behavioral specification of the SOFT rela-
tion.

6.2 Normal Iteration Among the Phases

In an ideal world, the specifier would proceed through the phases one after the other and
never have to go back and modify the products of an earlier phase once that phase was
complete. However, researchers know from thier experience with the Waterfall model of
software engineering that this is not the case. This section discusses the various common
ways that iteration occurs between the various phases.

6.2.1 Constructing Partial Specifications

It is common in process to have one portion of the specification more refined than another
portion. This is sometimes a concious choice — focusing on some aspects of the system
while ignoring others — but it can also be that certain details were overlooked by accident
when the specification was first constructed.

One case where this can happen is after during the Sensors and Actuators phase. Here,
some of the specification will still be at the detailed requirements phase while you are
refining the specification of a particular sensor or group of sensors and actuators.

Another case is when you abstract away certain portions of the computation. For
example, in avionics systems sometimes there are complex conditions that must be satisfied
for certain mode transitions. These often depend on control laws, continuous functions, etc.
that might not be convient to represent. Furthermore, the way in which these conditions
are met is often well understood. Thus, you might wish to put off defining exactly how
these conditions are satisfied until later in the specification effort. When this information
is added, the new parts of the specification will need to go through the phases of just like
the other parts of the specification.

6.2.2 Monitored and Controlled quantities

Sometimes, new monitored and controlled quantities will emerge as you are constructing
the preliminary behavior specification. There are several reasons why this might be the

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

6.2. NORMAL ITERATION AMONG THE PHASES 47

case.

First, you may discover that you need additional information from the environment to
be able to compute the values of the controlled quantities. These may be, for example,
operator inputs that you did not anticipate.

Second, as you study the system in more detail, it may become clear that there are
more controlled variables. For example, the system needs to accomplish ’x’ but to do that,
we need to introduce a controlled variable which makes that possible.

Finally, sometimes to make it easier to say certain things about the domain it is easier
to adjust the particular choices of monitored and controlled variables rather than express
a very complex relationship between the ones that you have. For example, in a system
that monitores the fuel level in a tank, there are many different monitored quantities that
you could choose, a boolean indicating whether or not the liquid is at a certain level, a
numeric measurement of the liquid level in the tank, etc. Each of these choices are valid,
but have different implications when you construct the preliminary behavior specification
and as you refine the specification.

In general, you should think carefully about the choice of monitored and controlled
variables but realize that you may have to revist those choices later in the specification
effort due to unforseen difficulties.

6.2.3 Draft Requirements and Requirements Structure

It is natural to switch back and forth between structuring and the requirements and de-
veloping a specification of the behavior. As you specify the behavior in more detail, you
may discover modules or pieces of the computation that may be reused accross different
sections. In addition, you may want to reorganize the computation, or refine the interfaces
of the modules. Similarly, as you develop the module structure, you may change your
ideas about how to specify the behavior, and in what order various computations need to
be performed.

The iteration between these activities is similar to the iteration that you would normally
see in an object oriented development between the creation of the class diagrams and the
creation of sequence diagrams.

6.2.4 Detailed Requirements and Prior Phases

When adding the information in the detailed requirements phase, sometimes you may
discover that the structures that you have choosen for the requirements are not conducive
to adding fault tolerance, etc. Thus, you may have to restructure or add structure to the
requirements to support these additional behaviors.

In general, it is necessary to keep these things in mind from the begining of the specifi-
cation effort, but beneficial to not get bogged down in the details when first understanding

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

48 CHAPTER 6. METHODOLOGY AT A GLANCE

the system. This is a delcate balance which becomes easier with experience in specification.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 7

Phase 1: Commonality Analysis

Today’s consumers want devices and systems custom fitted to their needs and software
product-line engineering has the potential to deliver great cost savings and productivity
gains to organizations that provide families of products, as well as give those organizations
a competitive edge in the market-place. For safety-critical systems, software-product line
engineering has the potential to produce systems that are more safe than their serially
produced counterparts while being cheaper and faster overall to build.

Even if the goal of the development effort is the creation of a product family, techniques
oriented towards product families may still be used to provide for increased flexibility in
the long term. One can view the iterative version of a program that are produced through
maintenance as a product family.

Although it is certainly not a definitative reference on illiciting commonalities and
variabilities, this chapter describes how to construct a specification of the product family
within the FORM pcg method.

7.1 Goals

The commonality analysis [62] is the document that describes the product family. Any
product family may be described by listing its commonalities, i.e., those features that
are shared by all members of the families, and its wariabilities, i.e., those features that
are allowed to vary accross members of the family. For example, in the altitude switch
family, all family members will posses some method of assessing the current altitude of
the aircraft (using various combinations and types of altimeters). However, altimeters may
vary in terms of the quality or charaterists of the altitude that they provide (more on that
in the next sections).
The goals of this stage, then, are to do the following:

e Define the top-level family commonalities and variabilities for the system.

49

50 CHAPTER 7. COMMONALITY ANALYIS

e Define sub-families encompassing different areas or dimensions of flexibility within
the overall family.

e For each sub-family, the commonalities and variabilities should be cohesive.

e Construct a decision model for the family.

7.2 Entrance Criteria

This is the first phase of the methodology. Before starting, you should make sure that that
you have access to domain experts who know about the systems that are present in the
domain.

7.3 Activities

This section describes the activities that take place in the Commonality Analysis phase
of the methodology. The first objective the phase is to create a high-level description of
the family; this is described in the first section. The next two activities involve creating
commonalities and variabilities and identifying dimensions and structure in the product
line. You may find that you iterate between these three activities has your understanding
of the family progresses. Next, the family structure is refined and the decision model for
the family is specified. For more information about how to describe a product family,
see [63, 62].

7.3.1 Define the Top-Level Family

This section describes the first activity of the FORMpcg method: Defining the top-level
family that will form the basis for the specification(s) developed in the later phases. Thus,
this is an important activity. We will begin discussing this activity by describing our
running example: the altitude switch. Next, we will describe how this family is scoped for
the purposes of this methodology. Finally, this activity ends when a one to three paragraph
description of the family has been generated.

In avionics, the altitude of the aircraft is an essential environmental quantity. Many
devices on board the plane react to changes in the altitude, for example, the autopilot
must know the plane’s current altitude in order to know whether to climb or descend. In
addition, there are many other devices on board the plane that rely on altitude. However,
these different devices vary greatly in the types of actions that the perform in response to
the altitude data. In addition, the types of altitude data differ significantly from system
to system and from aircraft to aircraft. We might make an intial attempt at a family
description such as the following:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 51

The ASW family consists of systems on board the aircraft that utilize the values
from the various altimeters on board to make a choice among various options
for actions (one of which being to do nothing) and perform the choosen action.

Our family could be viewed as a sub-family of a larger family that would include
all aspects of avionics systems. This description does describe all the systems on board
the plane that use the altitude and is therefore a good starting point for describing our
family. However, notice that the particular actions that the system performs can be largely
separated from tasks relating to measuring the altitude and fusing the results from various
different types of altimeters. We will refine this further in the next section where we talk
about the high-level commonalities and variabilities for the ASW family.

In summary, to develop the high-level definition of the product family you do the
following:

e Brainstorm about the family: What systems are potentially members of this family?
What sorts of functionality do those systems have? What are the common threads
that tie these sytems together?

o Next, develop a first pass description of the family. Have other members of the
product team and the domain experts review this description.

e Finally, develop a specific, one paragraph description of the product family that
clearly conveys the basic ideas behind the systems under consideration. Be specific,
but avoid introducing too much detail.

In the next section, we will start to elaborate on our understanding of the ASW product
family by developing an initial list of commonalities and variabilities for the ASW family.

7.3.2 Initial Commonalities and Variabilities

We can begin to develop a list of initial commonalities by examining the system descrip-
tion. Furthermore, it is unrealistic to try and list either all the commonalities or all the
variabilities at one time. Sometimes, it is easier for domain experts to identify the variabil-
ities; however, it may be difficult for them to the precise way in that the variability values
must be assigned to produce a viable family member. We denote commonalities by a 'C’
and then a number so that they can be referenced elsewhere in the document (variabilities
are noted in simliar fashion).

Generally, commonalities and variabilites can be highly related and should be grouped
together if they related to the same parts of the system description. These grouping provide
the basis for discovering the dimensions and sub-families that define the structure of the
domain.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

52 CHAPTER 7. COMMONALITY ANALYIS

In is often useful to start out with high-level commonalities and variabilities and work
towards a more refined description of the family. The highest level commonalities define the
boundaries of the broadest possible product family. As more commonalities are added, the
definition of the family becomes more refined. It is useful to preserve those commonalities
that define the outermost scope of the family — these are the least likey to change in
the future and, thus, should depend on physical principles of the essential purpose of the
system.

Along the same lines, commonalities and variabilities can also be separated by whether
or not they apply generally to the REQ relation or to the IN” and OUT’ relations. Thisis a
useful separation because in the next phases of the methodology, we will be concentrating
on the REQ relation and will get to the IN’ and OUT’ relations in the last phase.

Obviously, there is much information on illiciting commonalities and variabilities, man-
aging the process and meetings, etc. that we have not included here. That is a topic that
is covered in many other books and references, including 63, 7, 35] among others.

All of the commonalities and variabilties for the ASW system are listed in Appendix A.
As an example, consider the highest level ASW commonalities and variabilities for the
ASW.

C1 All ASW systems will have a way to measure the altitude of the aircraft

C1.1 The ASW system will use the information about the aircraft’s altitude to make
a decision as to what action the ASW should perform

V1 The actions that the ASW takes in response to the altitude and the criteria to perform
those actions varies from aircraft to aircraft

This is really just an alternative way to specify our high-level family description. Next,
we add a few more details on how the ASW system gets its information.

V2 The number and type of Altimeters, devices that measure altitude, on board each
aircraft may vary.

V2.1 Some altimeters provide a numeric measure of the altitude (digital altimeters)
where as some altimeters simply indicate whether or not the altitude is above
or below a constant threshold that is determined when the altimeter is manu-
factured (analog altimeters).

Now, we know that there are a number of different sensors on the aircraft that can mea-
sure altitude (i.e., the altimeters) and we know that there are two types of fundementally
different altimeters: analog and digital. We can add some information on how the ASW
handles fusing the data frome these various sensors into one estimate of the altitude:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 53

V3 In family members where there is more than one altimeter, a variety of smoothing
and/or thresholding algorithms may be used to determine the estimated value for
the true altitude or estimated value of whether or not the aircraft is truely above or
below a certain threshold.

V3.1 Methods for choosing numeric altitude from several numeric sources will be
mean, median, smallest, largest

V3.2 Methods for choosing whether or not the aircraft is above or below a certain
threshold from a variety of altimeters that are either thresholded or numeric are
any one above/below, all above/below, and majority above/below.

And, we can add information about how all altimeters on the plane are supposed to
function.

C2 All Altimeters will provide an indication of whether or not the supplied altitude is
valid or not

C2.1 An altitude that is denoted to be invalid shall not be used in a compuation to
determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalide altitudes) for
a specified period of time, then the ASW will declare that the system has failed.
This period of time shall be constant for each family member (i.e., determined
at specification time).

V4 The period of time that the altitude must be invalid before the ASW will declare a
failure may vary from family member to family member.

Finally, there are a few more properties of the ASW family that we need to express in
relation to the various indications that the ASW should produce and user controls on the

ASW.
C3 All ASW systems will provide a failure indication to the environment.

(C3.1 The indication that the ASW has failed will be the fact that the ASW has not
strobed a watchdog timer within a specified amount of time. This period of
time shall be a constant for each family member (i.e., known at specification
time).

C4 The ASW shall except an inhibit signal. While inhibited, the ASW shall not attempt
to perform any action other than declaring a failure.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

54 CHAPTER 7. COMMONALITY ANALYIS

C5 The ASW shall except a reset signal. When the reset signal is recieved, the ASW
shall return to its initial state.

For the purposes of the running example for this methodology, we will define a sub-
family of the ASW pertaining only the ASW family members that turn on or off and
particular Device of Interest on board the aircraft. By making it a sub-family, we keep
open the option of reusing all the work that we have done in defining commonalities and
variabilties in altitude processing that we have specified thus far. Hopefully, with the
family structured in this way the implemention of these features will also be reusable.

We denote the commonalities and variabilities for the DOI subfamily as Cpor and Vpop
respectively.

Cporl The ASW shall change the status (turn on or off) a Device of Interest (DOI) when
it crosses a certain threshold

Vpoil The threshold for the ASW varies from 0 to 8024 feet from aircraft to aircraft

Vpor2 Whether the ASW turns on/off the DOI when passing above/below the threshold
is a variability with nine possible choices:

do nothing going above or below;

turn on going below, do nothing going above;
turn off going below, do nothing going above;
do nothing going below, turn on going above;
turn on going below, turn on going above;
turn off going below, turn on going above;

do nothing going below, turn off going above;
turn on going below, turn off going above; or,

turn off going below, turn off going above;

To deal with noisy data, or the aircraft flying near to the threshold altitude, the DOI
controlling ASW needs to have a certain hysteresis factor that is used to deterimine how
much the altitude of the plane must change in order to have the DOI powered on or off
again. The commonalities and variabilities that govern the hysteresis function of the ASW
are given below.

Cpor2 The ASW shall employ a hystersis factor to ensure that when the aircraft is flying
at approximately the threshold altitude noisy data from the altimeters or slight vari-
ations in altitude do not cause the ASW to turn on/off the DOI in rapid succession

Vpor3 The hysteresis factor may vary from aircraft to aircraft

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 55

Vpord The hysteresis factor may vary depending whether or not the aircraft is going above
or below the threshold.

Cpor3 Both the hysteresis factor for going above and the hysteresis factor for going below
shall be a constant for each particular aircraft (i.e., known at specification time).

Finally, the ASW will received updates from the DOI whenever that status of the
DOI changes. This is important to confirm whether or not the DOI is responding to
the commands issued by the ASW as well as fofill the requirement denoted by the final
commonality.

Cpor4 The DOI shall give the ASW an indication of its status (on or off) whenever that
status changes

Cpord Whenever the ASW submits a command to the DOI, it shall wait for a specified
period of time for the status of the DOI to change to reflect the command. If the
status does not change within the specified period of time, then the ASW shall declare
a failure. The period of time will be a constant for each aircraft

Vpord The period of time that the ASW will wait after issuing a command to the DOI
before indicating a failure if the DOI does not change status shall vary from aircraft
to aircraft.

Cpoi6 The ASW shall not attempt to power on the DOI if the DOI is already on or
attempt to power off the DOI if the DOI is already off.

In the next section, we discuss how to view the structure of the ASW family that we
have started to define.

7.3.3 Identify Family Structure

Even for a family as small and simple as the ASW, we can identify elements of structure
in the family. This identification is useful because it helps us to understand the family
and it is invaluable if, in the future, we would like to refactor the family or incorporate
the family as a part of a larger family. For example, we might like to have one family that
encompasses all the avionics devices built (not just the ASW).

When you are writting a lot of commonalities that start with the word “if” you may
consider making a sub-family. For example, we could have written all the DOI common-
alities as “If the action to be formed is turning on or off a DOI, then ...” However, this is
wordy; and, when the family structure becomes more complex it is very difficult to under-
stand the commonalities. It is often better to define a subfamily when there are conditions
on the commonalites.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

56 CHAPTER 7. COMMONALITY ANALYIS

A

Majority Above Threshoid }---- -
Majority Below Threshold e
Any One Above Threshold

Any One Below Threshold [

All Above Threshold

All Below Threshold

Numeric Least §-----¢-----d---mepremmobomees -

Numeric Greatest

Numeric Median §----- R R R ity

Numeric Average

0\\-\@90\"\\010&\99 //00 ’/0(\ //00 /,d(\ ,,d(\ ,,0(\
Nl P 4P % P o @
004‘3,40”‘?")\"90\»0?90\’?0 ?yo

S0, @ o
P o(‘ P QO ,’V\ee\o‘é e\d‘:x P ‘\C; Q\(‘S’xQ\CY‘l
I &

Figure 7.1: The ASW family structure visualized in 2 dimensions

Diminensions of the family, are used as a visualization technique to separate out the
major choices of the family. Dividing a family into dimensions does not necessarily mean
partitioning all the commonalities and variabilities of the family. For the ASW, we identi-
fied two possible dimensions: 1) the choice of the altitude smoothing and/or thresholding
algorithm and 2) the major choice of functionality for the DOI. This decomposition is show
in Figure 7.1.

Figure 7.1 depicts the various possible members of the ASW family, as we have currently
defined it in the phase 1 appendix. An interesting property of the figure is that there are no
family members currently that use the numeric altitude methods that we dicussed in the
commonalities and variabilities. This is because we have only looked at a small sub-family
of the possible behaviors of the ASW family. In the future, we can envision adding all sorts
of behaviors some of which might use the numeric methods.

The reader might note that the dimension of the family that shows the choice of smooth-
ing or thresholding algorithms has some structure. That is, either the algorithm will have
a numeric result and be a smoothing algorithm or it will have a boolean result and be a
thresholding algorithm. This structure is visualized in Figure 7.2.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 57

ASW Altitude
Algorithm

Dimansion

Numsric Thresholded
Algarithms Aigorithms

(X
Exteremes Median Average /

Method Direction

Greatest Smallest Majority AnyOne Al Below Above

Figure 7.2: The structure of the Altitude Dimension for the ASW

Visualizing the structure of the family in this way can be useful in developing a better
understanding of the system. You may find that some commonalities should be made
into more general statements and moved to the top-level family. Alternatively, you may
discover that certain commonalities and variabilites may be very tied to the current way
of doing things and likely to change. These, you may wish to isolate by placing them in a
subfamily. In the next section, we dicuss how to refine the family specifications.

7.3.4 Elaborate Variabilities and Commonalities

In the next phase of developing the family description the commonalities and (especially)
the variabilities should be refined so that they contain actual quantities (or choices) for
the variations. This was done for one of the DOI variabilities above, but values should be
filled in for other variabilities as well.

For example, we might like to refine REF VAR 4 so that we specify the tolerances on
the failure indication time for the family.

V4 The period of time that the altitude must be invalid before the ASW will declare a
failure may vary between 2 seconds and 10 seconds from family member to family
member.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

58 CHAPTER 7. COMMONALITY ANALYIS

7.3.5 Define the Decision Model

The decision model represents a recording of which choices for all the possible variabilities
result in current family members. Obviously, the more complex the structure of the family,
the more complex the decision model will be.

Building the decision model can often help to identify commonalities or variabilities
that may have been forgotten in the initiation draft of the family requirements. This
is because engineers, familar with the products, may recall items that must be specified
about a particular family members that they did not recall when attempting to generalize
to all family members. For example, in our first draft of the ASW commonalities and
variabilities, we had forgotten to add a variability to the DOI subfamily for the threshold.

One way that the decision model can be written down is by simply noting which choices
are made for each family member. For the ASW family, we have done that below for several
ASW family members.

e (CS-123: This aircraft as one analog and one digital altimeter, turns on the DOI
when at least one altimeter is below 2000 feet, will not turn the DOI back on until
going 200 ft above the threshold, has a timeout of 4 seconds for altitude staleness
and 2 seconds for the DOL.

e CS-134: This aircraft as one analog and two digital altimeter, turns on the DOI
when at least one altimeter is below 2000 feet, will not turn the DOI back on until
going 200 ft above the threshold, has a timeout of 4 seconds for altitude staleness
and 2 seconds for the DOL

e DD-123: This aircraft as one analog and one digital altimeter, turns on the DOI
when at least one altimeter is below 2000 feet, will not turn the DOI back on until
going 250 ft above the threshold, has a timeout of 2 seconds for altitude staleness
and 2 seconds for the DOL

Even so, there are a number of disadvantages to listing the family member config-
urations in this way. First, it is difficult to tell whether all required variabilities have
been given values. Second, it is difficult to easily see family members that have the same
choices for the variability values. A tabular format is often used to represent the decision
model. A tabular decision model for the ASW family members that we will consider in
this methodology is presented in Figure 7.3.

In a family with a more complex structure, a hierarchical series of tables might be used
with one table for each sub-family, for example.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.4. EVALUATION CRITERIA 59

Variability CS-123 CS-134 DD-123 DD-134 EF-155
of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3
Threshold Algo. Any Any Any Majority Majority
Invalid Alt. Failure 4s 2s 2s 2s 2s
Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off
Go Below Action Turn On Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft
Go Below Hyst. NA NA NA NA 200 ft
DOI timeout 2s 2s 2s 2s 2s

Figure 7.3: A tabular representation of the ASW family decision model

7.4 Evaluation Criteria

It is difficult to tell whether or not a list of commonalities and variabilities is “good” or
“bad.” Nevertheless, many of the same criteria that apply to requirements can be applied
to commonalities and variabilities.

For each commonality, a review should be conducted to determine the following:

¢ Is the commonality truely common for the subfamily underwhich it is defined? If
not, then the family should be refactored.

e Can the commonality be moved to any other, larger subfamily?
Similarly, for each variability a review should be conducted
e Do parameters of variation need to be specified for this variability?
o If parameters of variation are necessary, are all known variation values included?

In addition to evaluation of the commonalities and variabilities, the analyst also needs
to evaluate the structure of the family that has been created at this point. The analyst
should look at each sub-family and dimension that has been expressed in the commonality
analysis and determine the following:

e What does this sub-family or dimension mean in the context of my system?
e Does this sub-family or dimension contribute to understanding of the system?

Some sub-families or dimensions that are possible, may not be meaningful and therefore,
can be discarded.
Finally, you should have a completely specified decision model for the family.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

60 CHAPTER 7. COMMONALITY ANALYIS

7.5 Exit Criteria
e Each commonality and variability passes the evaluation criteria.
e The family structure (sub-families and dimensions) meets the criteria outlined above.

e The decision model has been created.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 8

Phase 2: Identify Environmental
Variables

This chapter describes how to take the description of the family developed in the last
chapter and create a list of the environmental quantities which are, in some sense, important
to the proposed chapter.

In this chapter, we will explore the types of environmental quantities (introduced Chap-
ter 4) used in the system. Fundementally, these are quantities which are either used by the
system, i.e., monitored quantities, or are affected by the system, i.e., controlled quantites.
We will also explore the ways in which the environmental quantities can vary, the absense
of the proposed system (i.e., without any control).

8.1 Goals

The focus of this chapter is first to identify the monitored and controled quantities and then
to describe them in such a way that the resultant list will form an interface between the
proposed system and its environment. Furthermore, we desire to develop an understanding
of how the physical environment behaves. Therefore, the goals of this phase are

e To develop a complete list of all the environmental quantities needed by the system so
that it can know what the required behavior should be (i.e., the monitored quantities),

e To develop a complete list of all the environmental quantities needed by the system
so that it can accomplish the control necessary to achieve the requirements (i.e., the
controlled quantities),

e To identify the existing relationships between the monitoried and controlled quanti-
ties.

61

62 CHAPTER 8. ENVIRONMENTAL VARIABLES

8.2 Entrance Criteria

Before starting this phase, you should have
e The completed product family specification developed in the first phase.
e An idea of the devices which will be used in the system (if possible or available).

e Access to domain experts.

8.3 Activities

The activities for this phase of the methodology follow in a straightforward fashion from
the goals outlined above: identifying monitored and controlled variables and then defining
them and their inter-relationships. Although we have separated out these tasks below, in
practice you will most likely iterate between the activities as your understanding of the
system developes.

8.3.1 Identifying Controlled Variables

The focus of this activity is to identify the environmental quantities that are under the
system’s control. Many environmental quantities will be mentioned in the commonalities
and variabilities were created in the previous phase. Now, the key is to recognize those
quantities and start to write them down.

In general, the question to ask when identifing controlled variables is: what do I want the
system to be able to do? A good potential source of information about controlled variables
might by an existing system specification. However, care must be taken that environmental
quantities are captured, rather than values which might be tied to particular actuators in
the system.

Controlled quantities can be broken down into several different types. This will help
us in identifying them. The types of controlled variables are:

¢ Environmental Quantities: These are values in the environment that you wish
to change as a result of the some action of the system. These should not be tied to
any particular actuators, but should represent actions that that system is capable of
performing.

e User Displays: These are values that need to be displayed to the user. These sort
of controlled variables often represent indicator lights, gauges, etc. that are present
in the physical system. Their purpose is to help the user develop a mental model
about the state of the system being controlled; thus, indicates of the state of the
controler are also often included.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 63

e Values for Another Subsystem: These are values that go to another subsystem.
You will see these sorts of controlled variables when you are specifying one piece out
of a system or subsystem and there are certain details that must be abstracted away.

In the ASW, the first controlled variable that comes to mind is the state of the DOI
state, which can be set by the ASW. As it happens, the DOI is an interesting case, because
the state of the DOI is both controlled and monitored by the ASW. This is due to the fact
that other systems can control DOL In terms of our catagories of controlled variables, the
DOI fits best as an environmental variable. The DOI is something which will exist on the
aircraft presumably whether or not the ASW is on board.

Another controlled variable is the failure indication of the ASW. The ASW is required
to supply an indication of whether or not it is operating correctly. Therefor, a controlled
variable is required to support this indication. In terms of the catagories, the failure
indication fits best as a user display, but could also be viewed as a subsystem interface
because it may be used by either component on board the aircraft.

In summary, the controlled variables represent those pieces of the interface between
the environment on the controller that can be manipulated by the controller to affect the
environment. Controlled variables fall into several catagories: environemental quantities,
user displays, and values for other subsystems. For the ASW, we discovered two con-
trolled variables: the DOI status which was an environmental quantity and the the failure
indication which was more of a user display.

8.3.2 Identifying Monitored Variables

In addition to controlled variables, we must also identify the quantities which the system
must monitor. In general, the best approach is to look at the controlled quantities and
ask the question: what information do I need to determine what the value this controlled
variable? This should lead you to the monitored variables. Another approach, if this is an
existing system, is to examine the sensors that are used and ask: what sort of information
about the environment is given to me by these sensors?

Monitored quantities, similar to controlled quantities, can be broken down into several
different types. This will help us in identifying them. The types of Monitored variables
are:

¢ Environmental Quantities: Values or conditions that exist in the environment
and are observable that you can use to compute the values of controlled variables.

e User set-points: Values that are specified by the user of the system. These values
change the way in which you compute the controlled quantities.

e Abstracted quantities: values that you expect to receive from another subsystem
that you introduce because you want to concentrate on the current subsystem.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

64 CHAPTER 8. ENVIRONMENTAL VARIABLES

e Quality Indications: These are variables which indicate the quality or obserabil-
ity of other monitored variables. These variables are often Boolean, for example,
indicating that you can or cannot know the altitude.

Certainly, the most obvious monitored quanitiy in the ASW is that of the Altitude.
This is clearly an environmental quantity, because the plan will have some altitude whether
or not the ASW is present. In addition, we know that eventually we will have some kind
of sensors in the system that actually measure the altitude. Thus, it is possible that there
will times when the alitude will not be measurable, for example, if the sensors are failed.
Therefor, another monitored variable is the Altitude_Quality variable.

8.3.3 Define the Variables

The monitored and controlled variables represent the interface of the system requirements,
the REQ relation, to the environment. It is important to capture the essential information
about each variable. Many important quantities to capture about input and output values
were noted in [57] and also in [34]. In the FORMpcs we have provided a template for the
user to specify the following information:

e Name and purpose. The purpose should include a statement about the physical
meaning of the variable as well as the rational for why this is a monitored or controlled
quantity.

e The type: boolean, floating point, integer, or enumerated
e The expected minium (if numeric)

e The expected maximum (if numeric)

e The units

e A description of the meaning of each enumeration (if enumerated), or a description
of the precision or other physical characteristics required if numeric with physical
units.

In addition to the above information, you may also want to note the precision that the
requirements are required to maintain about the variables.

If some of this information is not available yet (e.g., the expected minimum and maxi-
mum) do not worry. Specify it as UNDEFINED for now and leave that choice for later in
the process. Do not make up non-sensical values for these values: it is far better to have
UNDEFINED listed than to have a non-sensical value propgated through the requirements
process (and even, potentially, into design and implementation).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 65

For controlled variables, you will also want to specify a short description of the condi-
tions under which the variable can take on its various values. For examle, if a particular
variable can be either “on” or “off”, what conditions cause it to take on these values. This
activity will help you in later states as you refine this informal description of each controlled
variable into a formal description of the REQ relation (and later the SOFT relation).

As you begin to define the conditions under which each variable takes on its various
values, you may find that even with these informal descriptions you can find previously
overlooked errors in your conceptions of the requirements. If these sorts of issues arrise,
you should list them at the end of the variable definition, until they can be resolved.

Figure 8.1 shows an example of a controlled variable specification from this phase of
the ASW development. It shows the definition of the DOI variable as desribed above.
Figure 8.2 shows the MON_Altitude variable from this phase.

This activity centers around starting to fill in the details about the monitored and
controlled variables which were identified. It is normal for some information to be unknown
at this point; however, resist the temptation to simply make up a value in these cases.
Instead, try to define unknown quantities as UNDEFINED and list this lack of knowledge
as an issue for that particular variable. This ensures that these issues will be resolved at
some later point in the effort, and not just be forgotten.

8.3.4 Define Relationships Among Variables

In this activity, you will denote the relationships between the monitored and controlled
variables that exist as part of the environment (and in the absense of the proposed system).
Thus, by this activity we are encoding the NAT relation.

A system context diagram is helpful in starting to think about the environment of the
system. This is a diagram which shows each input and output to the system. The key in
capturing the NAT relation is to begin to think about how the rectangular boxes (i.e, the
monitored and controlled variable sources) interact with one another in the environment.
Figure 8.3 shows the system context diagram for the ASW.

Michael Jackson provides some good guidance on how to identify the actors in the
environment that the system interacts with in his books [29, 31]. Jackson builds on the
system context diagram to include techniques for identifying and describing the interaction
of the system with its environment. That work is complementary to this methodology, and
will not be reproduced here.

In addition, some points to consider when specifying the NAT relation are the following:

e Identify how quickly a monitored or controlled variable may change. For example,
altitude cannot change from 0 to 10,000 ft in one second.

o Identify relationships between variabls. For example, if variable X has value y then

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

66 CHAPTER 8. ENVIRONMENTAL VARIABLES

[STATE VARIABLE|

CON_DOI_P2

Parent: NONE

Possible Values: On, Off, Uncommanded
Initial Value: UNDEFINED

Classified as: Controlled

Purpose: This variable represents the ASW’s commanded status of the De-
vice of Interest (DOI).

Interpretation:

On: Indicates that the DOI is commanded to be On. The DOI is
commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on, and the ASW
is not inhibitied.

Off: Indicates that the DOI is commanded to be Off. The DOI is
commanded to be off when the aircraft leaves the target region
and after a certain period of time has passed. If this time is
UNDEFINED, then the ASW will never turn the DOI Off.

Uncommanded: Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in
any step were the ASW does not issue a command to the device
of interest.

Issues:

e If the aircraft leaves the target area and the DOI is on, but was not
commanded to be on by the ASW, should the ASW turn it off?

Figure 8.1: The CON_DOI variable in Phase 2 of the methodology

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 67

|INPUT VARIABLE|

MON_Altitude_P2

Type: INTEGER

Initial Value: UNDEFINED

Units: ft

Expected Minimum Value: 0

Expected Maximum Value: 50000

Classified as: Monitored

Purpose: This variable represents the ASW'’s idea of what the altitude of
the aircraft is. It is related to the Altitude_Quality variable.

Interpretation:

Precision: We will know the altitude to within +10 ft.

Figure 8.2: The MON_Altitute variable in Phase 2 of the methodology

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

68 CHAPTER 8. ENVIRONMENTAL VARIABLES

DOI

MON_DOI CON_DOI

CON_Failure MON_Altitude

Aircraft

MON_Reset MON_Inhibit

e Operator

Figure 8.3: The System Context Diagram for the ASW in this Phase

variable Z cannot have value q. These conditions, which should hold over the whole
system, should be noted as assertation.

These constraints between the variables will be usefull in the development of the REQ
relation in the following phases and also later to provide as inputs to static analysis. The
NAT relation might be represented as simply a series of conditions or equations that are
always true about the environment; or, that type of specification may be combined with a
language similar to the language used to specify the REQ relation. This choice is highly
dependent on what level of formality and/or detail is desired in the NAT relation as well
as who suitable to the languages involved are to representing NAT. Therefore, it is highly
dependent on the particular system involved.

In any event, because the NAT and REQ relations are intimately related, it will proba-
bly be necessary to revisit the NAT relation upon further investigation of the REQ relation.

8.4 Evaluation Criteria

For each monitored and controlled variable, the following questions should be answered:

e Does the definition of each monitored and controlled quantity contain a description
of its units, rational for including it in the list of environmental quantities, ways in
which the environment of the system constrains its values.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.5. EXIT CRITERIA 69

e For controlled variables, does there exist monitored quantities which would allow the
computation of the correct value of the controlled variable.

e Does the NAT relation given adaquately specify the contraints on the monitored and
controlled variables? ‘

8.5 Exit Criteria

At the end of this phase, you have essentially defined the interface for a module that will
encapsulate the REQ relation. The only element that we have not talked about explictly
is the points at which each family member differs. This phase is complete when

e A list of environmental quantities has been developed

o A specification of the how the environment or the values of other variables accompa-
nies each variable in the list.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

70 CHAPTER 8. ENVIRONMENTAL VARIABLES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 9

Phase 3: Initial Requirements
Structure

In this chapter the commonalities and variabilities developed in the first phase will be
combined with the monitored and controlled variabled discovered in the previous phase to
form the basis to reason about what the high-level structure of the REQ relation should
be.

This high-level structure will represent the module structure in a language that supports
module encapsulation. In a language that does not support encapsulation, the specifier
will have to manually provide for points in the specification so that pieces can be easily
separated.

9.1 Goals

The goal of this chapter is to make establish a high-level structure for the requirements.

e Establish a structure for the requirements, grouping together those entities in the
draft specification which “belong” together in some sense.

e Avoid the introduction of design details while structuring the requirements.

e Support the reuse of pieces of the draft specification and, also, support the families
and sub-families developed in phase 1, the Commonality Analysis.

9.2 Entrance Criteria

Before entering the structuring phase, you will need the following:

71

72 CHAPTER 9. INITIAL STRUCTURE

e Family and sub-family relationships from phase 1

e Environmental variables from phase 2

9.3 Activities

The activities in this phase involve getting a broad overview of the computeration that
will be preformed as well as defining modules to perform the computation. This phase is
tightly coupled with the draft requirements phase of the next chapter and you will most
likely find that you shall iterate between these phases.

9.3.1 Define Dependancy Relationships

In this activity, you identify which monitored variables and modes are necessary for the
computation of each controlled variable. The goal of this activity is not to produce a
detailed graph; although if one does not have a tool-supported language that work may
have to be done by hand. Rather, the goal is to formulate a solid idea of the order in
which entities in the system must be computed so that there are no circular dependencies
between the various variables.

The first step is to make a sort list in each controlled variable definition of which other
controlled variables, monitored variables, and mode machines it depends upon. Then you
can go through and see any controlled variables depend on each other, or if any mode
machines depend circularly on controlled variables.

Circular dependencies must be resolved in some way. One way to resolve them is to
use the PRE value for one of the variables. That is, instead of using the value of the
variable which will be computed during this step, you use the value that the variable had
at the start of the computation (which, obviously, can be known without any computation
and therefore does not introduce a circular execution dependency). Care must be taken to
ensure that one can, in fact, use the PRE values — note that they will always be “one step
behind” in some sense. It is not desirable to have a specification which takes more than
one step to settle into a valid value; each step of the specification must result in a valid
and meaningful set of controlled variable values.

Often, it is helpful to view a large specification as a series of functional blocks. The
different blocks can then be drilled down into in a functional-decomposition type style. In
addition, these functional blocks may be candidates to be made into modules.

9.3.2 Define Modules and Interfaces

In the preceeding section, we identified the rough dependency relationships for the REQ
specification. In this activity, we will use the dependency relationships to start to group

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

9.4. EVALUATION CRITERIA 73

pieces of the computation together to form modules.

Parnas [50] defined a critera to be used in decomposing a system into modules called
information hiding. Using this philosophy, every module in the system should be choosen
so as to encapsulate a decision or several decisions about the system. The interface of such
a module exposes only the essential information that the rest of the specification requires.
It has been suggested in CoRE [57] that a method for determining which decisions should
be grouped together should be whether they are expected to change together.

Another way to view a module is as an addition to the vocabulary that you use to
express the requirements. This is the reasoning that lies behind the standard modules used
in functional declaration style in the RSML ¢ language. A module may allow the specifier
map to a construct in the physical domain to a single construct in the specification.

One building block that we might like for the ASW is a module that exports the
thresholded altitude taking into consideration the hysteresis factor that is required. We
will then be able to use such a module to make decisions about whether to turn the ASW
on or off. The definition of the interface to this module is shown in Figure 9.1.

After starting work on the draft specification, we realized for the ASW that in order
to properly specficy the reset behavior of the system in RSML™¢, we had to provide for a
top-level ASW mode and an operating module. This is an example of how iteration occurs
between these two phases.

9.4 Evaluation Criteria

e Each module should have a purpose. The start of a module block should include
a paragraph describing what the purpose of the module is and why it imports and
exports certain values.

e Each import and export should have a purpose within the module.

9.5 Exit Criteria

You are done with the Requirements Structure phase when you all the modules in the
system pass the above evaluation criteria. The products of the Requirements Structure
phase are the following:

¢ A series of module definitions (see above)
o A diagram of the structure of the specification.

e A specification of how each import of every module is provided by the enclosing scope
(i.e., the specific module interconnections).

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

74 CHAPTER 9. INITIAL STRUCTURE

MODULE ThresholdedAltitude_P3 :

INTERFACE :

IMPORT Altitude_P3 : Integer
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P3 : Integer
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Hysteresis_P3 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT Direction_P3 : UpDownType

Purpose :

&*L. This parameter tells the thresholding algorithm

which direction we are interested in applying the hysteresis

to. If the direction is specified as Down, then we will have to
go above threshold altitude by the hysteresis amount before we
can declare that we are above (and, thus, be allowed to declare

below again). L*&
END IMPORT
EXPORT AboveOrBelow : AboveBelowType

Purpose :

&xL this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor Lx&

END EXPORT

END INTERFACE

DEFINITION :
END DEFINTION

END MODULE

Figure 9.1: Module Defined to threshold altitude

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

Chapter 10

Phase 4: Draft Requirements
Specification

In this chapter, a prelimary draft of the requirements specification will be constructed.
While the examples in this and later chapters are given in RSML ¢, the guidance on which
aspects of the system to concentrate on and how to evaluate the work should be applicable
to a wide variety of languages.

10.1 Goals

The goal of this phase is to capture the essential behavior of the system: what was the
system meant to do. For the time being, we will put on the back burner questions of
fault tolerance, error conditions, etc. These will be delt with in more detail after we have
developed a good normal-case understanding of the system.

In the previous chapter, we blocked out the computation of the REQ relatoin. The
specific goals of this section, then, are the following:

e Define how each module will be computed from inputs to outputs

e To define how each controlled variable is computed under normal operating condi-
tions.

o To define when each controlled variable must be computed (i.e., on demand or peri-
odic).

To define how and when each monitored variable will be recorded from the environ-
ment.

To remove unnecessary monitored and controlled quantities.

75

76 CHAPTER 10. DRAFT REQUIREMENTS

10.2 Entrance Criteria

Before staring to work on the draft behavior specification, you should have completed
identification of the monitored and controlled quantities from the previous section. Thus,
you should have the following:

e The initiation specifiation structure from the previous phase.
e A list of the monitored and controlled quantities in the system.

e A specification of the NAT relation, i.e., a specification of the existing relationships
between the monitored and controlled quantities.

10.3 Activities

The activities in this section focus on refining the informal specification of how each con-
trolled variable takes on each of its values to a formal specification of this information.
The goal is to provide a detailed and formal specification such that given a set of values
for the monitored variables, a set of values for the controlled variables can be known.

In practice, you may iterate between this phase and the previous phase as your un-
derstanding of the system increases. In addition, you may wish to define modules to use
within the computation of other modules. In which case, you would use the module creation
guidelines in the previous phase to help decide which modules you needed.

10.3.1 Specify Each Controlled Variable

In this activity, you will specify formally how each controlled variable assumes its various
values. This activity is a natural extension of the previous one, because it involves not only
thinking about what values are necessary to compute the controlled variables, but exactly
how those variables contribute to the controlled values. Furthermore, you may also iterate
between this activity and identifying potential modes because you may discover the need
to keep some system state or system mode information as you try to determine what values
the controlled variables should be.

There are two main styles for defining a state variable in a system: the transitional
style and the equivalence style. These two styles are explained in the following paragraphs,
with examples.

Equivalence-Style Specifications: Equivalence-style specification of a state variable
is, perhaps, the most straightforward. In this style, the specifier states explicitly in a series
of cases what value the state variable assumes. The value of the variable is, thus, always

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 7

defined unless explicitly noted otherwise by the specifier or unless it is a child underneath
another state variable.

For any computation of the specification, it is expected that one and only one case of
the variable will be true; the state variable then assumes the value specified by the one
unique case. If the state variable does not have a case which evalutes to true in some step,
then we say that the variable definition is incomplete because for the particular sequence
of inputs events leading up to this step the variable does not have a defined value. If the
state variable has more than one case which is true then we say that the specification is
inconsistent; how can we know which case is the one that was intented by the specifier?

Variables specified in this way are similar to condition tables in SCR.

An example from the ASW of a equivalence-style specification is the CON_Failure
variable (below, from phase 4). In this case, we want to declare a failure of the ASW as
soon as one of our designated failure conditions exists and stays in the failure mode until
a reset occurs.

EXPORT CON_Failure_P4 :
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE

DURATION(AttemptingOn(), O S, Clock) > DOI_Timeout_P4 T * % % ;
DURATION (Attempting0ff(), 0 S, Clock) > DOI_Timeout_P4 * T * %
DURATION(MON_Altitude_Quality_P4 = Invalid, O S, Clock) * *x T % ;
PRE(CON_Failure_P4) = False * x x T ;

END TABLE

EQUALS FALSE IF

TABLE
DURATION(AttemptingOn(), 0 S, Clock) > DOI_Timeout_P4 : F
DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 : F
DURATION(MON_Altitude_Quality_P4 = Invalid, 0 S, Clock) : F
PRE(CON_Failure_P4) = False : F

END TABLE

END EXPORT

Transitional-Style Specifications: Sometimes, we are not so interested in what values
a variable should have in each step but, rather, it is desireable to specify when the variable
should change values. A transitional-style specification consists of a series of transitions,
each with a source state, a destination state, and a condition. When the condition is true
and the variable has the value specified by the source state, then the variable will become
the value specified by the destination state.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

78 CHAPTER 10. DRAFT REQUIREMENTS

Some languages include the notion of a triggering event for transitions (RSML~° does
not). In these languages, a transition is taken with the triggering event occurs (and possibly
when the gaurding condition is true in addition to the trigger happening). However, much
semantic information can be embedded in such events and we find that it is preferrable to
state explicitly the conditions under which an event occurs. Therefore, in RSML™¢ (and
similar languages) an event is simply that a set of conditions are true in this step which
were not true in the previous step (or vice-versa).

Transitional-style specifications can share the same notion of consistency as equivalence-
type specifications. Nevertheless, for a transitional-style specification, it is usually expected
that the variable will retain its current value in the absence of any need to change. There-
fore, transitional-style specifications cannot make use of the notion of completeness because
it is expected that there will be some steps (probably many steps) in which the none of
the transitions evaluate to true.

Although the topic can be debated, the notion of completeness can be extended to
transitional-style specifications if we require the specifier to include transitions in the spec-
ification from each state back to itself which will be taken in steps were we do not wish
the variable to change value.

An example from the ASW of a transition style specification is the CON_DOI variable
(below, from phase 4).

EXPORT CON_DOI_P4 :
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF
TABLE

DOI_Action_0k(On) T T
WHEN (ThresholdedAlt_P4.Result_P4 = Below, False) : T * ;
GoBelowAction = TurnOn T *
WHEN (ThresholdedAlt_P4.Result_P4 = Above, False) : * T ;
GoAboveAction = TurnOn : x T

END TABLE

TRANSITION Uncommanded TO O0ff IF

TABLE
DOI_Action_Dk(0Dff) :TT;
WHEN (ThresholdedAlt_P4.Result_P4 = Below, False) : T * ;
GoBelowAction = TurnQOff : T *
WHEN (ThresholdedAlt_P4.Result_P4 = Above, False) : * T ;
GoAboveAction = TurnOff * T

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 79

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P4 = 0ff, False)

END EXPORT

10.3.2 Identify Potential Modes

In this activity, you will examine the informal descriptions of how each controlled variable
takes on its values and begin to identify potential modes of the system. The first step
in this activity is to make a list of what information is necessary to compute each con-
trolled variable. Some of this information will be monitored variables, or previous values
of monitored variables. Other information that may be needed might include the results
of previous computations on the monitored variables.

In general, modes of the system are points at which changes of the values of the mon-
itored variables causes changes of the values of controlled variables. For example, a con-
trolled variable might depend on a specific series of user inputs are events before it can
take on a particular value; thus, we will require a mode machine of some kind which will
record for us where in the sequence of actions we are and what input we expect to occur
next.

A concrete example is that of a weapons firing interlock. It is usually true a number
of conditions must become true before pressing the ‘fire’ button will cause the weapon
to fire, for example, perhaps that airplane must be traveling at a particular speed, or at
least a certain altitude. Furthermore, it is usually not desirable to have the press of the
firing button precede these events: what if the firing button is stuck down and we cross a
threshold altitude which makes the preconditions true? We probably do not want to fire
in that case. To model this type of behavior, we must store internal state information so
that we can track where in the squence we are.

Modes partition of the functionality of the system. When a mode variable has one
value, the system behaves in one way and when the mode has a different value, the system
behaves in another way. The above example of a squence of values is not the only time
when this occurs. For example, in the ASW, a mode of the system is whether or not the
ASW is inhibited. If the ASW is inhibitied, then it will not turn on the DOI regardless of
crossing a threshold altitude; if it is not inhibited, then it will attempted to turn on the
DOI when passing below the threshold.

Modes may represent some alternate or reduced functionalty operation of the system.
For example, many systems have a startup or shutdown mode in addition to the normal
operation mode. Another example is when a system has some reduced functionality modes;
for example, when the values of some environmental quantities are not available, the system
may only be allowed to perform a subset of the available actions.

Finally, modes may be introduced to represent to the enivironment or controller what
the system is doing. For example, in an aircraft, the various systems can be on autopilot,

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

80 CHAPTER 10. DRAFT REQUIREMENTS

or in landing or take-off modes. If the system being built is responsible for implementing
one or more of these modes, then it will be useful to represent them explicitly in the
requirements because they are the language in which the customer will be most able to
communicate. In addition, it will be a common desire to state properties about these
modes, for example, “ the system will not lower the landing gear while in take-off mode.”

There are a number of examples of variables which might be considered modes in the
ASW specification. The first that comes to mind is the ASW _System_Mode variable (below,
from phase 4). This variable controlls the overall functioning of the ASW. Although, in this
case, there is only the reset mode (and that mode has no functionality), this same structure
could be used to represent a startup and shutdown mode, or it could be used to represent
different modes of reduced functionality simply by added values to the ASW _System_Mode
variable and then defining appropriate behavior for those modes. Using the module con-
struct (or cut and paste) it is possible to allow modes to share functionality while still
differing significantly in some areas.

STATE_VARIABLE ASW_System_Mode_P4 :
VALUES : {Reset, Operating}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L&

DEFAULT_VALUE : Operating

TRANSITION Operating TO Reset IF
WHEN (MON_Reset_P4, False)

TRANSITION Reset TO Operating IF
DURATION (PRE(ASW_System_Mode_P4), 0 s, Clock) >= 0 §

END STATE_VARIABLE

Another example of variable that functions as a mode is the ApplyHisteresis vari-
able that is defined inside of the ThresholdedAltitude_ P4 module. This mode determines
whether or not the system should apply the Histeresis factor when determining whether
the aircraft is above or below the threshold.

STATE_VARIABLE ApplyHisteresis_P4 :
VALUES : {NoHyst, Above, Below}
PARENT : NONE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 81

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE
DEFINED(Altitude_P4) : T
WHEN(Altitude_P4 < Threshold_P4, False) : T ;
END TABLE

TRANSITION NoHyst TO Below IF

TABLE
DEFINED(Altitude_P4) : T
WHEN(Altitude_P4 > Threshold_P4, False) : T ;
END TABLE

TRANSITION Above TO NoHyst IF
TABLE
DEFINED(Altitude_P4) T T ;
WHEN (Altitude_P4 < Threshold_P4 + AboveHysteresis_P4, False) ;
WHEN(Altitude_P4 > Threshold_P4 BelowHysteresis_P4, False) : * T ;
END TABLE

]
*

TRANSITION Below TO NoHyst IF
TABLE
DEFINED(Altitude_P4) :TT
WHEN (Altitude_P4 > Threshold_P4 + AboveHysteresis_P4, False) : ;
WHEN (Altitude_P4 < Threshold_P4 - BelowHysteresis_P4, False) : * T ;
END TABLE

—
*

END STATE_VARIABLE

10.3.3 Using Tools to Visualize the Preliminary Behavoral Spec-
ification

This section describes how using a formal language that is supported by tools can help in
visualizing the requirements at this stage. Many forma languages are supported by tools,
including RSML ¢, which is supported by the NIMBUS tools. The examples given in this
section are from the NIMBUS toolset; however, almost any reasonable good formal language
tools will provide this information.

Viewing the System Dependency Graph One of the artifacts of this stage in the
processs is the system dependency graph. For a simple specification, it may be easy enough
to generate this by hand. For a more complex specification doing it by hand will be much
more complex.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

82 CHAPTER 10. DRAFT REQUIREMENTS

In practice, it is easier to think about stages or blocks of the computation for a complex
specification. Nevertheless, a detailed visualization of the actual dependency group that is
generated by tools can be very useful.

Simulating the Draft Specification Simulating the draft specification allows the an-
alyst, customers, and others involved (managers, regulatory agencies, researchers, etc.) to
see what the specified behavior of the system is and make corrections early in the process.
Thus, simulation is an invaluable tool for validating the specification and is especially
useful if it can be done early and continuously throughout the effort.

Many languages support tools which allow the user to input data into the input variables
and see what values the outputs take on. More advanced toolsets, like NIMBUS allow the
user to connect the draft requirements to more advanced models and simulations of the
environment. For example, in a avionics context, the draft specification could be connected
to a cockpit simulator and tested with actual pilots. In a medical devices context, the draft
requirements might be connected to an accurrate simulation of the body or be run through
actual patient data. By accurately simulating the environment and input sequences to the
draft specification, you can achieve a much higher quality product than just making up
the inputs yourself (from your own mental model of the environment).

10.4 Evaluation Criteria

To evaluate the entities produced in this phase, you should ask the following questions:

e Does each variable used in the éystem have a complete definition?

e Are there any monitored variables which are not used to compute the value of any
controlled quantity? If so, can they be eliminated?

e Are there any controlled quantities which are never produced as a result a of a change
in the monitored quantities? If so, can they be eliminated?

e Are there any cycles in the system dependency graph? If so, they should be elimi-
nated.

e There should be no imports which are not used in the computation of the exports.
In addition, there should be no exports which are never generated.

All imports for all modules have been given a value in the enclosing scope.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.5. EXIT CRITERIA 83

10.5 Exit Criteria
You have completed a good draft specification when you have the following:

e Complete definitions of all monitored, controlled, and state variables

e View of the variable dependency graph

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

84 CHAPTER 10. DRAFT REQUIREMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 11

Phase 5: Detailed Requirements
Specification

In this chapter, the draft requirements specification is updated to include information about
fault tolerance and error conditions which was intentially left out of earlier drafts. By the
end of this phase, a complete specification of the REQ relation, the system requirements,
will be produced.

11.1 Goals

The goal of this chapter is to complete the specification of REQ so that it includes all
necessary information. In addition, we will prepare the REQ relation for the realities of
sensor failures, etc. by adding in failure modes.

e Specify startup and shutdown behavor
e Specify the tolerances of each controlled and monitored variable
e Identify possible error conditions and specify the error handling behavior

e Specify degraded modes of functionality in response to tolerance violations or error
conditions

11.2 Entrance Criteria

Before starting this phase, you should have the following;:
e The structured draft of REQ from the previous phases

e A rough idea of what types of sensors and actuators might be used in the system.

85

86 CHAPTER 11. DETAILED REQUIREMENTS

11.3 Activities

The activities of this section help you to focus on the special cases of the specification.
These are areas of the systems operation which are do not represent the normal operating
modes of the system, but rather the boundary cases and error conditions that the system
must handle.

Given that the activities in this section are very important, the reader may question
why it is that we are just getting around to them now. We do them at this stage in the
methodology because it is easier to deal with these cases after one developes a thourough
understanding of the system. We do not focus on them at the begining because it is easy
to become bogged down in special cases before developing an understanding about the
essence of what it is the system is supposed to do.

11.3.1 Specify Initialization and Shutdown Activities

Most controllers have (or should have!) a different operational profile immediately after
they are turned on and just before they are about to turn off. The reason for this is that the
environment in which the controller operates is a system of its own right (and is described
by the NAT relation); it exists with or without the presence or operation of the controller.
Certainly, there are two different systems: one with the controller turned on and one with
the controller turned off. And, these systems behave differently from one another.

The startup and shutdown modes of a system are designed to handle the fact that is
necessary to transition from the system were the controller is off to the system where it is
on and vice-versa. In particular, for the startup mode, it is necessary to ensure that the
model of the environment within the controller matches the real environment and for the
shutdown mode it is necessary to ensure that once the controller goes offline the system
will be in a safe state (and will remain in a safe state in the absense of the controller’s
actions).

Consider the accident in which a chemical plan explosion was caused by a system which
was designed to use a metering pump to put a certain amount of catalyst into a reaction.
The control system had begun this operation and then was taken offline. While the system
was offline, the pump continued to run. However, when the control system was turned
on again, it started counting from where it had left off, not taking into consideration the
amount which had been pumped while it was offline. This is an example of improper
startup and shutdown behavior for the system.

The ASW’s startup mode is very simple: it just has to receive five seconds of valid
altitude in order to transfer to normal operation. Thus, it can be represented with only
a single transition and does not need other behavior. In other systems, the controller
may need to wait until it develops a certain confidence in the estimates of the monitored
quantities before it issues any commands to the environment.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

11.3. ACTIVITIES 87

11.3.2 Specify Error Handling

The first thing to do in specifying the error handling behavior of the specification is to
create a list of potential error conditions in the specification. Note that all of the possible
error conditions may not be known at this time; some error conditions may only come
to light when we add information about the sensors and actuators. Nevertheless, we will
know about many possible error conditions during our development of the REQ relation
and we should attempt to handle those error conditions in the best way possible.

It is often useful to have a global failure mode that encapsulates the failure behavior
for the system. The ASW’s failure mode is given in the example below.

EXPORT CON_Failure_P5 :
PARENT : NONE
DEFAULT_VALUE : False

TRANSITION False TO True IF
TABLE
ASW_System_Mode_P5 = NormalOperating
ASW_Operating Mode_P5.CON_Failure_P5
ASW_System_Mode_P5 = Degraded
ASW_Operating_Mode P5.CON_Failure_P5
END TABLE

* x =
- 3 % %

TRANSITION True TO False IF ASW_System_Mode P5 = Reset

END EXPORT

The ASW is a faily simple example. In more complex systems, it is useful to have each
module below the main module also export a failure indication that covers failures local to
that module. Then, the global failure mode checks each of these local failure indications
and, if they are true, may decide declare a failure or to enter some reduced functionality
mode as is discussed in the next section.

11.3.3 Degraded Modes of Functionality

Often, we wish to have a system which has some behavior under ideal conditions, i.e.,
good knowledge about the environment, but which will continue to function in a safe
manner event if conditions are not ideal (for example, with broken sensors or actuators).
If we know that the desired controller has these properties, then we can plan ahead and
establish several different modes of functionality ranging from fully operational where all
information is known to an acceptable confidence to a shutting down mode where the
system will turn itself off and leave the process in a safe state.

This sort of system is difficult to construct because, in a sense, many different systems
are being specified - one for each degrated functionality mode. However, it may be that

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

88 CHAPTER 11. DETAILED REQUIREMENTS

the system behavior is more or less the same in these various modes. In that case, the
modes may be able to be treated as a family.

The various modes of the ASW and how the ASW switches between them are shown
below. We have simply added additional states to the undeveloped ASW _System_Mode
from the previous phase. We have added an overall failure mode to deal with system
failures and also a value for the started and degraded functionality modes.

STATE_VARIABLE ASW_System_Mode_P5 :
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L&

DEFAULT_VALUE : Startup
TRANSITION NormalOperating TO Reset IF MON_Reset_P5
TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality P5 = Valid, 0 S, Clock) > 1 M

TRANSITION Reset TO NormalOperating IF
DURATION (PRE(ASW_System_Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

In order to enter the degraded functionality mode, we must know whether two episodes
of invalid altitude lasting at least one second have occured within one minute of each
other. This requires state information, so we have introduced the EpisodeMonitor P5
variable to track the occurence of episodes and inform the ASW_System_Mode variable
when a qualifying episode as occured and it is necessary to enter degraded functionality
mode.

STATE_VARIABLE EpisodeMonitor_ PS5 :
VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}
PARENT : NONE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

11.3. ACTIVITIES 89

Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functiomality
mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF
DURATION(MON_Altitude_Quality_P5 = Invalid, O S, Clock) > 1 §

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > 1S : T ;
DURATION(PRE (EpisodeMonitor_P5) = FirstEpisode) > 1 S : T

END TRANSITION

TRANSITION FirstEpisode TO NoEpisode IF
DURATION(PRE(EpisodeMonitor_P5) = FirstEpisode) >= 1 M

TRANSITION QualifyingEpisode TD NoEpisode IF
DURATION(MON_Altitude_Quality PS5 = Valid, 0 S, Clock) >= 2 M

END STATE_VARIABLE

11.3.4 Specify Tolerances and Handle Violations

In the ideal world of the REQ specification, we know the value of each controlled variable
with exact precision. Nevertheless, we know that eventually we will build a physical im-
plementation of the system and that in that implementation we cannot know the values
for certain or to an infinite accuracy.

In many cases, the tolerance of a controlled variable is constant throughout the entire
specification. In that case, the tolerance may be specified in much the same way as the
precision was specified for monitored variables.

In other cases, the tolerance of a controlled variable may be a function of one or more
modes of the system. For example, some cases when tolerance may be a function include

e When particular variables in the specification increase in value, for example, the
altitude of an aircraft may be required to be controlled to a much greater tolerance
when the aircraft is near to the ground than when the aircraft is at a high altitude;

¢ When the system has several degrated modes of functionality, the controlled variables
may be specified to a wider tolerance in a mode of decreased functionality; and,

o When the system has a high load the controlled variables may have a wider tolerance,
for example, in the case of a tracking system if the system is tracking 30 aircraft it

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

90 CHAPTER 11. DETAILED REQUIREMENTS

may track each one to a certain tolerance; however, if the system had only 5 aircraft
to track it may be able to track each one to a greater level of accuracy.

11.4 Evaluation Criteria

The specification of REQ is complete when the following are true:

e All errors for the system should have a specified behavior or an explaination of why
the system does not need to handle that error differently from the normal case.

o All variables specified in the system should be complete and consistent

11.5 Exit Criteria

You are done when the specification of REQ meets the criteria expressed above.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 12

Phase 6: Including Sensors and
Actuators

This chapter describes how to take a specification of the REQ relation and refine that
specification into a specification of the SOFT relation.

12.1 Goals

The goal of chapter is to produce the finished specification of the SOFT relation. In a
sense, the activities done in this phase are a microcosm of the activities done in earlier
phases as you first describe the IN and OUT relations at a high level and then begin to
specify the IN"! and OUT ! relations.

12.2 Entrance Criteria
¢ The complete specification of REQ
o A list of all the sensors and actuators which will be or could be used in the system.

o A description of the properties of each sensor and actuator.

12.3 Activities

The activities of this phase are essentially just a replication of the previous phases, except
for the IN~! and OUT ! relations as opposed to the REQ relation. Thus, we will begin by
identifying the sensors and actuators in the system from the commonalities and variabilities
in phase one. Then we will identify the input and output variables as we did in phase two.

91

92 CHAPTER 12. SENSORS AND ACTUATORS

We will then move on to the overall structure of the IN"! and OUT ™! relations just as in
phase three, and construct a draft of the relations as in phase four. Finally we will add
all the necessary error handling and polishing as in phase five. At that point we will have
completely specified the SOFT relation.

12.3.1 Identify and Describe the Sensors and Actuators

The first step in adding the IN~! and OUT"! relations is to identify and describe the
sensors and actuators involved in the system. After that, you identify the input and
output variables for the software. This activity is analogous to phase two for the REQ
relation.

For the ASW, each aircraft as a number of altimeters that measure the altitude, a
status indication from the DOI, a reset signal, and an inhibit signal. All inputs except for
the altimeters pretty much map directly to the existing monitored variables. Therefore, on
the input side we will concentrate in refining the IN~! relation for the Altitude monitored
quantity.

The commonality anaylsis from phase one tells us that we will have a varying number
and type of altimeters for each aircraft that we wish to build. Furthermore, we know that
the different types of altimeters yield different information: analog altimeters give only
above or below whereas digital altimeters yield a numeric altitude.

On the output side, we have the DOI command indication and the failure output. Only
the failure output needs significant changes to specify the output relation.

For the failure indication, the ASW must produce a pulse on a watchdog timer at least
every 200 MS or else the other devices on board the aircraft will believe that the ASW
has failed. This is the opposite from the way that the REQ relation works, where we only
produce an indication if there was a failure. Thus, we need a small state machine that will
produce a pulse if there is not a failure.

12.3.2 Outline the IN~! and OUT! Relations

The first step in specify inteh IN"! and OUT™! relations is to outline the computation,
just like we did for REQ in phase. For the ASW, the IN™! relation is the most interesting,
so we will focus on that one.

Each aircraft differs in the number and type of altimeters and in the algorithm used to
determine whether the aircraft is above or below the threshold from the various altimeters.
The first thing to notice is that the specification of REQ from phase five expects a numeric
altitude input. For compatability, we will change the input to REQ to be a thresholded
value and move the thresholding of the digital altimeters into the IN™! relation.

Thus, the overall structure of the IN~! relatin for Altitude is given by the following
module definition:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

12.3. ACTIVITIES 93

MODULE Altimeters_IN_P6 :

IMPORT DigialAlt_P6 :

INTERFACE :

IMPORT CONSTANT NumDigitalAlt _P6 : INTEGER
UNITS : NA
EXPECTED_MIN : ©
EXPECTED_MAX : 10

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : O
EXPECTED_MAX : 10

END IMPORT

[1 TO NumDigitalAlt] OF INTEGER

UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000
END IMPORT
IMPORT CONSTANT Threshold_P6 : INTEGER
END IMPORT
IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &+L This defines the hysteresis factor for going above
the threshold altitude. L+&

END IMPORT

IMPORT AnalogAlt_P6 :
END IMPORT

[t TO NumAnalogAlt] OF AboveBelowType

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

94 CHAPTER 12. SENSORS AND ACTUATORS

IMPORT DigitalQuality_P6 : [1 TO NumDigitalAlt] OF AltitudeQualityType
END IMPORT

IMPORT AnalogQuality_P6 : [1 TO NumAnalogAlt] OF AltitudeQualityType
END IMPORT

IMPORT INTERFACE AltitudeVoter_P6 :
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType
END EXPORT

END INTERFACE

DEFINITION :
END DEFINITION

END MODULE

The interface AltitudeVoter will be used by all the various implementations of the alti-
tude voting algorithm. The specification for each aircraft will decide how many altimeters
and which algorithm to use.

12.3.3 Specify the Normal-Case

For the next activity, we need to fill in the actual behavior of the IN"! and OUT! modules
that we have declared. The Definition part of the Altitude module is shown below (for
brevity, we will not duplicate the interface specificatoin).

DEFINITION :

MODULE_INSTANCE ThresholdedDigital P6 : [1 TO NumDigitalAlt] OF ThresholdedAltitude_P6
PARENT : NONE

ASSIGNMENT
Altitude_P6 = DigitalAlt_P6,
Threshold_P6 := EXTEND Threshold_P6 TO [1 TO NumDigitalAlt] OF INTEGER,

AboveHysteresis_P6 := EXTEND GoAboveHyst_P6 TO [1 TO NumDigitalAlt] OF INTEGER,
BelowHysteresis_P6 := EXTEND GoBelowHyst_P6 TO [1 TO NumDigitalAlt] OF INTEGER
END ASSIGNMENT
END MODULE_INSTANCE

SLOT_INSTANCE AltitudeVoter_P6 :
ASSIGNMENT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

12.4. EVALUATION CRITERIA 95

Num_of _Alt := NumDigitalAlt_P6 + NumAnalogAlt_P6,
Altitudes = ThresholdedDigital_P6.Result_P6 | AnalogAlt_P6,
Qualities DigitialQuality_P6 | AnalogQuality_P6
END ASSIGNMENT
END SLOT_INSTANCE

EXPORT Altitude_P6 :
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6
EQUALS AltitudeVoter_P6.Altitude_P6

END EXPORT

EXPORT AltitudeQuality_P6 :
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6
EQUALS AltitudeVoter_P6.AltitudeQuality_P6

END EXPORT

END DEFINITION

We also need to specify the various altitude voting algorithms. These can be found in
Appendix F. We will not duplicate them here.

At this point, it is possible to simulate the entire SOFT relation by wiring the IN~!
OUT™! and REQ relations together.

12.3.4 Specify Detailed SOFT Relation

With the preliminary version of the IN~! and QUT™! relations completed, it is possible to
move on and consider the startup, shutdown, and degraded functionality modes of the IN~!
and OUT! relations. For the ASW, there is not much here. But, you would construct the
detalied version of these relations in the same way as for phase five of the REQ relation.

All the analyses that were done on the REQ relation are also applicable to the IN~!
and OUT™! relations. They should be consistent and (ideally) complete just as the REQ
relation was refined to be. In addition, analysis to deterine the timing properties of the
SOFT relation, and the deviation of the output under noisy data should be performed.

At the end of this activity, you should have a complete specification of the SOFT
relation.

12.4 Evaluation Criteria

o Are assumptions (tolerance, frequency, etc.) placed on the input variables compatible
with the assumptions formed for the monitored variables in the previous phase?

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

96 CHAPTER 12. SENSORS AND ACTUATORS

e Has each additional error condition that was recognized been supplied with a specified
behavior?

e Have all known error conditions of the sensors and actuators been accounted for?

12.5 Exit Criteria

The specification is complete when you can answer “yes” to all of the above questions.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix A

The Altitude Switch in RSML™¢-
Phase 1

This chapter describes the running example for the FORM pcs methodology, the Altitude
Switch (ASW) family. One chapter in the appendix is devoted to the complete ASW fam-
ily specification as it exists at the end of each phase in the idealized FORMpcs process.
Of course, in constructing these idealized versions, we may have iterated between several
phases. It would be confusing to attempt to provide all of that information here. Never-
theless, where this iteration took place and was significant in nature, we have attempted
to explain it in these examples.

A.1 Commonalities and Variabilities for the ASW

The ASW family consists of systems on board the aircraft that utilize the values from the
various altimeters on board to make a choice among various options for actions (one of
which being to do nothing) and perform the choosen action. Therefore, some high-level
commonalities and variabilities are the following:

C1 All ASW systems will have a way to measure the altitude of the aircraft

C1.1 The ASW system will use the information about the aircraft’s altitude to make
a decision as to what action the ASW should perform

V1 The actions that the ASW takes in response to the altitude and the criteria to perform
those actions varies from aircraft to aircraft

At this point, the ASW is essentially a family of systems that process the altitude and
then can perform some action based on the altitude that is measured. Of course, the ASW

97

98 APPENDIX A. THE ASW IN RSML-#- PHASE 1

exists on board and aircraft of some kind and that aircraft will have a specified number
and type of altimeters. This is noted in the following two variabilities.

V2 The number and type of Altimeters, devices that measure altitude, on board each
aircraft may vary.

V2.1 Some altimeters provide a numeric measure of the altitude (digital altimeters)
where as some altimeters simply indicate whether or not the altitude is above
or below a constant threshold which is determined when the altimeter is man-
ufactured (analog altimeters).

Different manufacters and /or different situations may dictate using different algorithms
to process and threshold the altitude. This is noted in the following variabilities.

V3 In family members where there is more than one altimeter, a variety of smoothing
and/or thresholding algorithms may be used to determine the estimated value for
the true altitude or estimated value of whether or not the aircraft is truely above or
below a certain threshold.

V3.1 Methods for choosing numeric altitude from several numeric sources will be
mean, median, smallest, largest

V3.2 Methods for choosing whether or not the aircraft is above or below a certain
threshold from a variety of altimeters which are either thresholded or numeric
are any one above/below, all above/below, and majority above/below.

All the altimeters that are used on board the aircraft are required to provide a measure
of the validity of the measure. Futhermore, if the ASW cannot get a valid (or high enough
precision) estimation of the altitude, it should declare that the system has failed. Therefore,
we would like to record that fact as a commonality for the ASW family.

C2 All Altimeters will provide an indication of whether or not the supplied altitude is
valid or not

C2.1 An altitude which is denoted to be invalid shall not be used in a compuation
to determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalide altitudes) for
a specified period of time, then the ASW will declare that the system has failed.
This period of time shall be constant for each family member (i.e., determined
at specification time).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

A.1l. COMMONALITIES AND VARIABILITIES FOR THE ASW 99

V4 The period of time that the altitude must be invalid before the ASW will declare a
failure may vary between 2 seconds and 10 seconds from family member to family
member.

In order for other devices on board the aircraft to know that the ASW has failed, the
ASW must provide some kind of failure indication. Usually, this is done by having the
system in question cease to strobe a watchdog output. If the watchdog is not present,
then other devices on board the aircraft know that that piece of the system is no long
functioning for some reason.

C3 All ASW systems will provide a failure indication to the environment.

C3.1 The indication that the ASW has failed will be the fact that the ASW has not
strobed a watchdog timer within a specified amount of time. This period of
time shall be a constant for each family member (i.e., known at specification
time).

V5 The time interval with which the ASW must strobe the watchdog timer varies from
aircraft to aircraft.

The ASW also accepts an inhibit and a reset signal. The inhibit signal should prevent
the ASW from performing any action other than declaring a failure. The reset signal
should return the ASW to its initial state.

C4 The ASW shall except an inhibit signal. While inhibited, the ASW shall not attempt
to perform any action other than declaring a failure.

C5 The ASW shall except a reset signal. When the reset signal is recieved, the ASW
shall return to its initial state.

Finally, the ASW has several operating modes in addition to the normal one described
above. The ASW should wait until receiving at least 5 seconds of valid altitude before
performing any action.

C6 The ASW shall receive at least 5 seconds of valid altitude upon startup before entering
normal operation.

In addition, the ASW has a reduced functionality mode that is activated when two
episodes of invalid altitude lasting at least one second occur within a minute of each other.
In the reduced functionality mode, if the ASW detects that an action should be performed,
it shall wait for a minumum of 2 seconds before checking the conditions for action again. If,
after that minumum delay, the conditions for action are still statisfied, then it will perform
the action. However, if after the six seconds the conditions are not satisfied then the ASW
will disgard that action and go back to waiting for the aircraft to cross the threshold.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

100 APPENDIX A. THE ASW IN RSML-£- PHASE 1

C7 The ASW shall enter reduced functionality mode when two episodes of invalid altitude
lasting at least one second occur within one minute of each other

C7.1 While in reduced functionality mode, the ASW will delay performing any action
by a minumum delay period (2 seconds) at which time if the conditions for action
are still satisfied the ASW will perform the action

C7.2 While in reduced functionality mode, the ASW will not wait to peform an
action longer than the maximum delay time (6 seconds).

C7.3 The ASW shall exit the reduce functionality mode upon receipt of one minute
of valid altitude data

As defined, the ASW system currently allows for almost any action to be performed as
a result of the estimated altitude. A subfamily of the broad ASW famly would be the class
of ASW devices responsible for turning on or off a particular Device of Interest (DOI) on
board the aircraft.

Cpoil The ASW shall change the status (turn on or off) a Device of Interest (DOI) when
it crosses a certain threshold

Vpoil The threshold for the ASW varies from 0 to 8024 feet from aircraft to aircraft

Vpor2 Whether the ASW turns on/off the DOI when passing above/below the threshold
is a variability with nine possible choices:

do nothing going above or below;

turn on going below, do nothing going above;
turn off going below, do nothing going above;
do nothing going below, turn on going above;

[

[4

[]

[]

e turn on going below, turn on going above;

e turn off going below, turn on going above;

e do nothing going below, turn off going above;
e turn on going below, turn off going above; or,
[]

turn off going below, turn off going above;

To deal with noisy data, or the aircraft flying near to the threshold altitude, the DOI
controlling ASW needs to have a certain hysteresis factor that is used to deterimine how
much the altitude of the plane must change in order to have the DOI powered on or off
again. The commonalities and variabilities that govern the hysteresis function of the ASW
are given below.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

A.2. STRUCTURE AND MEMBERS OF THE ASW FAMILY 101

Cpor2 The ASW shall employ a hystersis factor to ensure that when the aircraft is flying
at approximately the threshold altitude noisy data from the altimeters or slight vari-
ations in altitude do not cause the ASW to turn on/off the DOI in rapid succession

Vpor3 The hysteresis factor may vary from aircraft to aircraft between 50 ft and 500 ft.

Vbor4 The hysteresis factor may vary depending whether or not the aircraft is going above
or below the threshold.

Cpoi3 Both the hysteresis factor for going above and the hysteresis factor for going below
shall be a constant for each particular aircraft (i.e., known at specification time).

Finally, the ASW will received updates from the DOI whenever that status of the
DOI changes. This is important to confirm whether or not the DOI is responding to
the commands issued by the ASW as well as fofill the requirement denoted by the final
commonality.

Cpoi4 The DOI shall give the ASW an indication of its status (on or off) whenever that
status changes

Cpord® Whenever the ASW submits a command to the DOI, it shall wait for a specified
period of time for the status of the DOI to change to reflect the command. If the
status does not change within the specified period of time, then the ASW shall declare
a failure. The period of time will be a constant for each aircraft

Voo The period of time that the ASW will wait after issuing a command to the DOI
before indicating a failure if the DOI does not change status shall vary between 1
second and 5 seconds from aircraft to aircraft.

Cpoi6 The ASW shall not attempt to power on the DOI if the DOI is already on or
attempt to power off the DOI if the DOI is already off.

In this section, we have discussed the commonalities and variabilities for the ASW
family. In the next section, we will examine the structure of the ASW family and we will
present the decision model for the ASW family.

A.2 Structure and Members of the ASW Family

As discussed in Chapter 7, the high-level structure of the ASW can be visualized as in
Figures A.1 and A.2.
The next section presents the decision model for the ASW.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

102

APPENDIX A. THE ASW IN RSML-£- PHASE 1

A

Majority Above Threshold |-

Majority Below Threshold

Any One Above Threshold [----4----

Any One Below Threshold

All Above Threshold

All Below Threshold

Numeric Least }----- .

Numeric Greatest |-----

Numeric Median §-----

Numeric Average f-----

.....................

\‘\\0‘3.@(\9 .&\\\\Q L0008 /’o(‘ /,o‘\‘ &
S R N N g
* ° @ \’po ?.po ?S’o \’"‘p Ypo
?90@“(\@// P ‘(‘\"‘\q o~ 4&‘
,/Oo 4 ‘,/\\oz\o Q,\o"x ,/V\oe of
%o ey ©

Figure A.1: The ASW family structure visualized in 2 dimensions

ASW Attitude
Algorithm
Dimension

Numeric Thresholded

Algorithms Algarithms
L X
Exteremes Median Average \
Mathod Direction
Greatest Smallest Majority AnyOne Al Below Above

Figure A.2: The structure of the Altitude Dimension for the ASW

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

A.3. DECISION MODEL FOR THE ASW 103

Variability CS-123 CS-134 DD-123 DD-134 EF-155
of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3
Threshold Algo. Any Any Any Majority Majority
Invalid Alt. Failure 4s 2s 2s 2s 2s
Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off
Go Below Action TurnOn Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft
Go Below Hyst. NA NA NA NA 200 ft
DOI timeout 2s 2s 2s 2s 2s

Figure A.3: A tabular representation of the ASW family decision model

A.3 Decision Model for the ASW

This section presents the decision model for the ASW family used in the methodology
document. For the purposes of the methodology, we will consider an ASW family with five
members. Figure A.3 shows the tabular decision model for the family.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

104 APPENDIX A. THE ASW IN RSML-E- PHASE 1

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix B

The Altitude Switch in RSML ™ ¢-
Phase 2

TYPE_DEF OnOffType_P2 { On, Off }
TYPE_DEF ActionType {NoAction, TurnOn, TurnOff}

MODULE ASW_REQ :
INTERFACE :

EXPORT CON_DOI_P2 : {On, Off, Uncommanded}
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be Off. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

105

106 APPENDIX B. THE ASW IN RSML-£- PHASE 2

\end{quote}
Lx&

Issues : &*L
\begin{myitemize}
\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?
\end{myitemize}
L*&

END EXPORT

EXPORT CON_Failure_P2 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. Lx&

Interpretation : &xL
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L&

END EXPORT

IMPORT MON_Altitude_P2 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

107

Interpretation : &x*L
\begin{quote}
\begin{mydescription}

\item[Precision:] We will know the altitude to within ± 10 ft.

\end{mydescription}
\end{quote}
L*&

END IMPORT

IMPORT MON_DOI_P2 : OnOffType_P2
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Reset_P2 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

108 APPENDIX B. THE ASW IN RSML~£- PHASE 2

Lx&
END IMPORT
IMPORT MON_Inhibit_P2 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and
false otherwise. The value is determined by the user and/or other
systems on board the aircraft. L&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the
DOI.
\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}
\end{quote}
Lx&

END IMPORT

IMPORT CONSTANT Threshold : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. Lx&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family
member. It is the length of time after which the ASW will

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

109

declare a failure if there is not valid altitude. Lx*x&
END IMPORT

IMPORT CONSTANT DOI_Timeout : Time
UNITS : NA
EXPECTED_MIN : 1 s
EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of
the ASW family to represent the amount of time before the ASW
declares a failure if the DOI does not respond to a command. Lx*&
END IMPORT
IMPORT CONSTANT GoAboveAction : ActionType
Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L*&
END IMPORT
IMPORT CONSTANT GoBelowAction : ActionType
Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L*&
END IMPORT
IMPORT CONSTANT GoAboveHyst : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst : INTEGER

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

110 APPENDIX B. THE ASW IN RSML~£- PHASE 2

UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*xk

END IMPORT
END INTERFACE

DEFINITION :
END DEFINITION

END MODULE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix C

The Altitude Switch in RSML ¢-
Phase 3

INCLUDE "asw-alltypes.nimbus"
MODULE ASW_REQ_P3 :
INTERFACE :

EXPORT CON_DOI_P3 : {On, Off, Uncommanded}
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be 0Off. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certaim period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI O0ff.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
L&

Issues : &=*L
\begin{myitemize}

111

112 APPENDIX C. THE ASW IN RSML-£- PHASE 3

\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P3 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. Lx&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L*&

END EXPORT

IMPORT MON_Altitude_P3 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000
CLASSIFICATION : Momitored

Purpose : &*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[Precision:] We will know the altitude to within ± 10 ft.
\end{mydescription}
\end{quote}
Lx&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

113

IMPORT MON_Altitude_Quality_P3 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L*&
END IMPORT

IMPORT MON_DOI_P3 : OnOffType_P3
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI L#*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Reset_P3 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*%

Interpretation : &xL
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Inhibit_P3 : Boolean
Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other
systems on board the aircraft. Lx&

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

114 APPENDIX C. THE ASW IN RSML-E- PHASE 3

Interpretation : &xL
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the
DOI.
\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}
\end{quote}
L*&

END IMPORT

IMPORT CONSTANT Threshold_P3 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. Lx&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P3 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &+L This constant will be defined by each family
member. It is the length of time after which the ASW will
declare a failure if there is not valid altitude. Lx*&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P3 : Time
UNITS : NA
EXPECTED_MIN : 1 s
EXPECTED_MAX : 5 s

Purpose : &+*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the DOI does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P3 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

115

Purpose : &+L This constant specifies the action that the ASW
will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. Lx&
END IMPORT
IMPORT CONSTANT GoBelowAction_P3 : ActionType
Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L&
END IMPORT
IMPORT CONSTANT GoAboveHyst_P3 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P3 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT
END INTERFACE

DEFINITION :
END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P3 :
INTERFACE :

IMPORT Altitude_P3 : Integer

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

116 APPENDIX C. THE ASW IN RSMLE- PHASE 3

UNITS : ft

EXPECTED_MIN : 0O

EXPECTED_MAX : 50000
END IMPORT

IMPORT CONSTANT Threshold_P3 : Integer
UNITS : ft
EXPECTED_MIN : 0O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P3 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P3 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT AboveOrBelow : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is
above or below the threshold given the hysteresis factor L*&

END EXPORT
END INTERFACE

DEFINITION :
END DEFINTION

END MODULE

INCLUDE “"standard-modules.nimbus"

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix D

The Altitude Switch in RSML™¢-
Phase 4

INCLUDE "asw-alltypes.nimbus"
MODULE ASW_REQ_P4 :
INTERFACE :

EXPORT CON_DOI_P4 : DOIControlledType
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be 0ff. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
Lx&

Issues : &*L
\begin{myitemize}

117

118 APPENDIX D. THE ASW IN RSML-#- PHASE 4

\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P4 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. Lx&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L&

END EXPORT

IMPORT MON_Altitude_P4 : INTEGER
UNITS : ft
EXPECTED_MIN : ©
EXPECTED_MAX : 50000
CLASSIFICATION : Monitored

Purpose : &+*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[Precision:] We will know the altitude to within $\pm 10% ft.
\end{mydescription}
\end{quote}
Lx&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

119

IMPORT MON_Altitude_Quality_P4 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L=&
END IMPORT

IMPORT MON_DOI_P4 : OnOffType_P4
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI Lx*&

Interpretation : &=*L
\begin{quote}
\begin{mydescription}
\item{On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Reset_P4 : Boolean

Purpose : &+*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*%

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Inhibit_P4 : Boolean
Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other
systems on board the aircraft. L*&

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

120 APPENDIX D. THE ASW IN RSML-#- PHASE 4

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the
DOI.
\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}
\end{quote}
L&

END IMPORT

IMPORT CONSTANT Threshold_P4 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P4 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &+L This constant will be defined by each family
member. It is the length of time after which the ASW will
declare a failure if there is not valid altitude. L&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P4 : Time
UNITS : NA
EXPECTED_MIN : 1 s
EXPECTED_MAX : 5 s

Purpose : &+L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the DOI does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P4 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

121

Purpose : &+L This constant specifies the action that the ASW
will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L*&

END IMPORT
IMPORT CONSTANT GoBelowAction_P4 : ActionType

Purpose : &+*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. Lx&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P4 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P4 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT
END INTERFACE
DEFINITION :

STATE_VARIABLE ASW_System_Mode_P4 :
VALUES : {Reset, Operating}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

122 APPENDIX D. THE ASW IN RSML£- PHASE 4

behavior. L*&
DEFAULT_VALUE : Operating

TRANSITION Operating TO Reset IF
WHEN (MON_Reset_P4, False)

TRANSITION Reset TO Operating IF
DURATION (PRE(ASW_System_Mode_P4), O s, Clock) >= 0 §

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating Mode_P4 : ASW_Operating_Mode_Def_ P4
PARENT : ASW_System_Mode_P4.0perating

ASSIGNMENT
MON_Altitude_P4 := MON_Altitude_P4,
MON_Altitude_Quality_P4 := MON_Altidue_Quality P4,
MON_DOI_P4 := MON_DOI_P4,
MON_Inhibit_P4 := MON_Inhibit_P4,
Threshold_P4 := Threshold_P4,
Invalid_Alt_Failure_P4 := Invalid_Alt_Failure_P4,
DOI_Timeout_P4 := DOI_Timeout_P4,
GoAboveAction_P4 := GoAboveAction_P4,
GoBelowAction_P4 := GoBelowAction_P4,
GoAboveHyst_P4 := GoAbovelyst_P4,
GoBelowHyst_P4 := GoBelowHyst_P4

END ASSIGNMENT
END MODULE_INSTANCE

EXPORT CON_DOI_P4 :
PARENT : ASW_System_Mode_P4.0perating
DEFAULT_VALUE : ASW_Operating_Mode_P4.CON_DOI_P4
EQUALS ASW_0perating_Mode_P4.CON_DOI_P4
END EXPORT

EXPORT CON_Failure_P4 :
PARENT : ASW_System_Mode_P4.0Operating
DEFAULT_VALUE : ASW_Operating_Mode_P4.CON_Failure_ P4
EQUALS ASW_Operating_Mode_P4.CON_Failure_P4
END EXPORT
END DEFINITION

END MODULE

MODULE ASW_OperatingMode Def P4 :

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

123

INTERFACE :

EXPORT CON_DOI_P4 : DOIControlledType

END EXPORT

EXPORT CON_Failure_P4 : Boolean
END EXPORT

IMPORT MON_Altitude_P4 : INTEGER
END IMPORT

IMPORT MON_Altitude_Quality_P4 : AltitudeQualityType

END IMPORT

IMPORT MON_DOI_P4 : OnOffType_P4
END IMPORT

IMPORT MON_Inhibit_P4 : Boolean
END IMPORT

IMPORT CONSTANT Threshold_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : O

EXPECTED_MAX : 8024
END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P4 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : 10 s
END IMPORT

IMPORT CONSTANT DOI_Timeout_P4 : Time

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : 5
END IMPORT

s
s
IMPORT CONSTANT GoAboveAction_P4 :

END IMPORT

IMPORT CONSTANT GoBelowAction_P4 :
END IMPORT

ActionType

ActionType

IMPORT CONSTANT GoAboveHyst_P4 : INTEGER

UNITS : ft
EXPECTED_MIN : &0
EXPECTED_MAX : 500

Draft produced on September 29, 2002

UNIVERSITY OF MINNESOTA

124 APPENDIX D. THE ASW IN RSML-£- PHASE 4

END IMPORT

IMPORT CONSTANT GoBelowHyst_P4 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

END INTERFACE
DEFINITION :
EXPORT CON_DOI_P4 :
PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF
TABLE

DOI_Action_0Ok(On) TT;
WHEN (ThresholdedAlt_P4.Result_P4 = Below, False) T * ;
GoBelowAction = TurnOn T *
WHEN (ThresholdedAlt_P4.Result_P4 = Above, False) * T ;
GoAboveAction = TurnOn * T ;

END TABLE

TRANSITION Uncommanded TO 0ff IF

TABLE
DOI_Action_Ok(0ff) TT;
WHEN (ThresholdedAlt_P4.Result_P4 = Below, False) : T * ;
GoBelowAction = TurnOff T *
WHEN (ThresholdedAlt_P4.Result_P4 = Above, False) * T
GoAboveAction = TurnOff * T ;

END TABLE
TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)
TRANSITION 0ff TO Uncommanded IF WHEN(MON_DOI_P4 = Off, False)
END EXPORT

MACRO DOI_Action_0Ok(act IS ActionType)
TABLE

MON_Inhibit_P4 : FF;
CON_Failure_P4 : FF;
MON_DOI_P4 = On T *
act = On : F x
MON_DOI_P4 = Off * T ;
act = Off : x F

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

125

END TABLE
END MACRO

EXPORT CON_Failure_P4 :
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE
DURATION(AttemptingOn_P4(), 0 S, Clock) > DOI_Timeout_P4 : T * * %
DURATION(AttemptingOff_P4(), O S, Clock) > DOI_Timeout_P4 R
DURATION(MON_Altitude_Quality_P4 = Invalid, O S, Clock) cok x T %
PRE(CON_Failure_P4) = False N
END TABLE

EQUALS FALSE IF

TABLE
DURATION (AttemptingOn_P4(), 0 S, Clock) > DOI_Timeout_P4 : F
DURATION (AttemptingOff_P4(), 0 S, Clock) > DOI_Timeout_P4 : F
DURATION(MON_Altitude_Quality_P4 = Invalid, O S, Clock) : F 3
PRE(CON_Failure_P4) = False i F
END TABLE
END EXPORT

MACRO AttemptingOn_P4()

TABLE
MON_DOI_P4 = 0Off : T
CON_DOI_P4 = On : T
END TABLE
END MACRO

MACRO AttemptingOff_P4()

TABLE
MON_DOI_P4 = On : T
CON_DOI_P4 = Off : T
END TABLE
END MACRO

MODULE_INSTANCE ThresholdedAlt_P4 : ThresholdedAltitude_P4
PARENT : NONE
ASSIGNMENT
Altitude_P4 := MON_Altitude_P4,
Threshold_P4 := Threshold_P4,
BelowHysteresis_P4 := GoBelowHyst_P4,
Abovellysteresis_P4 := GoAboveHyst_P4
END ASSIGNMENT
END MODULE_INSTANCE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

126

APPENDIX D. THE ASW IN RSML-£- PHASE 4

END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P4 :

INTERFACE :

IMPORT Altitude_P4 : Integer
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P4 : Integer
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P4 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P4 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P4 : AboveBelowType

Purpose :

&+L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P4 :
PARENT : NONE

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

127

DEFAULT_VALUE : Above IF
TABLE

DEFINED(Altitude_P4) T ;
Altitude_P4 > Threshold P4 : T ;
END TABLE
DEFAULT_VALUE : Below IF
TABLE
DEFINED(Altitude_P4) : T
Altitude_P4 <= Threshold P4 : T ;
END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P4))

EQUALS Above IF

TABLE
DEFINED(Altitude_P4) T ;
Altitude_P4 > EffectiveThreshold_P4 : T ;
END TABLE

EQUALS Below IF

TABLE
DEFINED(Altitude_P4) : T
Altitude_P4 <= EffectiveThreshold P4 : T ;
END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P4))
END EXPORT

STATE_VARIABLE ApplyHisteresis_P4 :
VALUES : {NoHyst, Above, Below}
PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF
TABLE
DEFINED(Altitude_P4) T
WHEN(Altitude_P4 < Threshold_P4, False) H
END TABLE

—

TRANSITION NoHyst TO Below IF
TABLE
DEFINED(Altitude_P4) : T
WHEN(Altitude_P4 > Threshold_P4, False) H
END TABLE

-

Draft produced on September 29, 2002

UNIVERSITY OF MINNESOTA

128 APPENDIX D. THE ASW IN RSML-E- PHASE 4

TRANSITION Above TO NoHyst IF
TABLE
DEFINED(Altitude_P4) : TT;
WHEN (Altitude_P4 < Threshold_P4 + Abovelysteresis_P4, False) : T * ;
WHEN(Altitude P4 > Threshold_P4 - BelowHysteresis_P4, False) : * T ;

END TABLE
TRANSITION Below TO NoHyst IF
TABLE
DEFINED(Altitude_P4) :TT;
WHEN(Altitude_P4 > Threshold_P4 + AboveHysteresis_P4, False) : T * ;
WHEN(Altitude_P4 < Threshold_P4 - BelowHysteresis_P4, False) : * T ;
END TABLE
END STATE_VARIABLE
STATE_VARIABLE EffectiveThreshold_P4 : INTEGER
PARENT : NONE
UNITS : ft
EXPECTED_MIN : Threshold_P4 - BelowHysteresis_P4
EXPECTED_MAX : Threshold_P4 + AboveHysteresis_P4
DEFAULT_VALUE : Threshold_P4

EQUALS Threshold_P4 + AboveHysteresis_P4
IF ApplyHysteresis_P4 = Above

EQUALS Threshold_P4 - BelowHysteresis_P4
IF ApplyHysteresis_P4 = Below

EQUALS Threshold_P4
IF ApplyHysteresis_P4 = NoHyst

END STATE_VARIABLE
END DEFINITION

END MODULE

INCLUDE "standard-modules.nimbus"

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix E

The Altitude Switch in RSML¢-
Phase 5

INCLUDE "asw-alltypes.nimbus"
MODULE ASW_REQ_P5 :
INTERFACE :

EXPORT CON_DOI_P5 : DOIControlledType
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[Dff:] Indicates that the DOI is commanded to be Off. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
Lxg

Issues : &*L
\begin{myitemize}

129

130 APPENDIX E. THE ASW IN RSML-£- PHASE 5

\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P5 : Boolean

Purpose : &+L This variable represents the ASW’s indication of
whether or not it has failed to the externmal world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. L*&

Interpretation : &x*L
\begin{quote}
\begin{mydescription}
\item{True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L*&

END EXPORT

IMPORT MON_Altitude_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[Precision:] We will know the altitude to within ± 10 ft.
\end{mydescription}
\end{quote}
L*&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

131

IMPORT MON_Altitude_Quality P5 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L&
END IMPORT

IMPORT MON_DOI_PS5 : OnOffType_P5
Purpose : &+L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI Lx*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Reset_P5 : Boolean

Purpose : &+L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}
L&

END IMPORT
IMPORT MON_Inhibit_P5 : Boolean
Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other
systems on board the aircraft. L*&

Draft produced on September 29, 2002 , UNIVERSITY OF MINNESOTA

132 APPENDIX E. THE ASW IN RSML~£- PHASE 5

Interpretation : &x*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the
DOI.
\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}
\end{quote}
L*&

END IMPORT

IMPORT CONSTANT Threshold_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family
member. It is the length of time after which the ASW will
declare a failure if there is not valid altitude. L*&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P5 : Time
UNITS : NA
EXPECTED_MIN : 1 s
EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of
the ASW family to represent the amount of time before the ASW
declares a failure if the DOI does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P5 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

133

Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L&

END IMPORT
IMPORT CONSTANT GoBelowAction_P5 : ActionType

Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &+*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT
END INTERFACE
DEFINITION :

STATE_VARIABLE ASW_System_Mode_P5 :
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

134 APPENDIX E. THE ASW IN RSML™£- PHASE 5

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P5
TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality P5 = Valid, 0 S, Clock) > 1 MIN

TRANSITION Reset TO NormalOperating IF
DURATION (PRE (ASW_System_Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P5 :
VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}
PARENT : NONE
Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functionality
mode. Namely, whether or not we have seen two periods of
invalid altitude lasting 1 second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF
DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > 1 8

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION (MON_Altitude_Quality_P5 = Invalid, O S, Clock) > 18 : T ;
DURATION (PRE(EpisodeMonitor_P5) = FirstEpisode) > 1 § T
END TABLE

TRANSITION FirstEpisode TO NoEpisode IF
DURATION (PRE(EpisodeMonitor_P5) = FirstEpisode) >= 1 MIN

TRANSITION QualifyingEpisode TO NoEpisode IF
DURATION (MON_Altitude_Quality_P5 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P5 : ASW_Operating Mode_Def_P5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

135

PARENT : ASW_System_Mode_P5.NormalOperating

ASSIGNMENT
MON_Altitude_P5

MON_Altitude_Quality _P5 :=

MON_DOI_P5
MON_Inhibit_P5
Threshold_P5
Invalid_Alt_Failure_P5
DOI_Timeout_P5
GoAboveAction_P5
GoBelowAction_P5
GoAboveHyst_P5S
GoBelowHyst_P5
DOI_Delay_P5
END ASSIGNMENT
END MODULE_INSTANCE

MON_Altitude_P5,
MON_Altidue_Quality_PS5,
MON_DOI_P5,

= MON_Inhibit_PS,
= Threshold_P5,

Invalid_Alt_Failure_PS5,
DOI_Timeout_P5,
GoAboveAction_P5,
GoBelowAction_P5,
GoAboveHyst_P5,
GoBelowHyst_P5,

=08

MODULE_INSTANCE ASW_Degraded_Mode_P5 : ASW_Operating Mode_Def _P5
PARENT : ASW_System_Mode_P5.Degraded

ASSIGNMENT
MON_Altitude_P5

MON_Altitude_Quality_P5 :

MON_DOI_P5
MON_Inhibit_P5
Threshold_P5
Invalid_Alt_Failure_P5
DOI_Timeout_P5
GoAboveAction_P5
GoBelowAction_P5
GoAboveHyst_P5
GoBelowHyst_P5
DOI_MinDelay_P5
DOI_MaxDelay_P5
END ASSIGNMENT
END MODULE_INSTANCE

EXPORT CON_DOI_P5 :
PARENT : NONE

DEFAULT_VALUE : Uncontrolled

MON_Altitude_P5,
MON_Altidue_Quality_P5,
MON_DOI_PS,
MON_Inhibit_P5,
Threshold_P5,
Invalid_Alt_Failure_P5,
DOI_Timeout_P5,
GoAboveAction_P5,
GoBelowAction_P5,
GoAboveHyst _P5,
GoBelowHyst_P5,

28,

6 S

EQUALS ASW_Operating_Mode_P5.CON_DOI_P5
IF ASW_System_Mode_P5 = NormalOperating

EQUALS ASW_Degraded_Mode_P5.CON_DOI_P5S
IF ASW_System_Mode_P5 = Degraded

EQUALS Uncontrolled IF
TABLE

Draft produced on September 29, 2002

UNIVERSITY OF MINNESOTA

136 APPENDIX E. THE ASW IN RSML~£- PHASE 5

ASW_System_Mode_P5 = Failed : T * ;
ASW_System_Mode_P5 = Reset : * T ;
END TABLE

END EXPORT

EXPORT CON_Failure_P5 :
PARENT : NONE
DEFAULT_VALUE : False

TRANSITION False TO True IF
TABLE

ASW_System_Mode_P5 = NormalOperating

ASW_Operating_Mode_P5.CON_Failure_P5

ASW_System_Mode_P5 = Degraded

ASW_Operating_Mode_P5.CON_Failure_ P5
END TABLE

* %]]
L B B

TRANSITION True TO False IF ASW_System_Mode PS5 = Reset

END EXPORT
END DEFINITION

END MODULE

MODULE ASW_OperatingMode_Def P5 :

INTERFACE :
EXPORT CON_DOI_P5 : DOIControlledType
END EXPORT
EXPORT CON_Failure_P5 : Boolean
END EXPORT
IMPORT MON_Altitude_PS5 : INTEGER

END IMPORT

IMPORT MON_Altitude_Quality_P5 :
END IMPORT

IMPORT MON_DOI_P5 :
END IMPORT

On0f£fType_P5

IMPORT MON_Inhibit_P5 :
END IMPORT

Boolean

AltitudeQualityType

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

137

IMPORT CONSTANT Threshold_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P5 : Time
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : 5

END IMPORT

8
s

IMPORT CONSTANT GoAboveAction_P5 : ActionType
END IMPORT

IMPORT CONSTANT GoBelowAction_P5 : ActionType
END IMPORT

IMPORT CONSTANT GoAboveHyst_PS : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay P5 : TIME
Purpose : &*L This parameter to the ASW operating module
determines whether or not we will wait to turn the DOI on. If it
is greater than zero, then we will wait. It represents the
minium waiting time L*&

END IMPORT

IMPORT DOI_MaxDelay_P5 : TIME

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

138 APPENDIX E. THE ASW IN RSML~#- PHASE 5

Purpose : &+L This parameter to the ASW operating module
determines the maximum waiting time that we will stay in a
Delayed action state before giving up and returning to NoAction
L*&

END IMPORT
END INTERFACE
DEFINITION :

EXPORT CON_DOI_PS :
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF
TABLE
GoBelowAction = TurnOn
ActionBelow_P5.PerformAction_P5
GoAboveAction = TurnOn
ActionAbove_P5.PerformAction_P5
END TABLE

LR I I |
- * *

TRANSITION Uncommanded TO 0ff IF
TABLE
GoBelowAction = Turn0Qff
ActionBelow_P5.PerformAction_P5
GoAboveAction = TurnOff
ActionAbove_P5.PerformAction_P5
END TABLE

* *)
[B B N 2

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P5 = On, False)
TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P5 = Off, False)
END EXPORT

MODULE_INSTANCE ActionBelow_P5 : DOI_Action_P5

PARENT : NONE

ASSIGNMENT
Direction_P5 := Down,
ThresholdedAltitude_P5 := ThresholdedAlt_P5.Result_P5,
MinDelay_P5 DOI_MinDelay PS5,
MaxDelay_P5 DOI_MaxDelay_P5,
AltitudeQuality_P5 MON_AlitudeQuality_P5,
ActionOK_P5S DOI_Action_0k_P5(),
Clock := Clock

END ASSIGNMENT

[}

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

139

END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P5 : DOI_Action_P5
PARENT : NONE

ASSIGNMENT
Direction_P5S := Up,
ThresholdedAltitude_P5 := ThresholdedAlt_PS5.Result_P5,
MinDelay_PS := DOI_MinDelay_P5,
MaxDelay_P5 := DOI_MaxDelay_P5,
AltitudeQuality_P5 := MON_AlitudeQuality_P5,
Action0OK_P5 := DOI_Action_Ok_P5(),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MACRO DOI_Action_Ok_P5(act IS ActionType)
TABLE

MON_Inhibit_P5 : FF;
CON_Failure_P5 : FF;
MON_DOI_PS = On : T %
act = On : F %
MON_DOI_PS5 = Off cox T
act = 0ff : * F
END TABLE
END MACRO

EXPORT CON_Failure_P5 :
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE

DURATION (AttemptingOn(), 0 S, Clock) > DOI_Timeout_P5 T * x %,
DURATION (AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5 * T * x
DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) * * T % ;
PRE(CON_Failure_P5) = False * x x T ;

END TABLE

EQUALS FALSE IF

TABLE
DURATION (AttemptingOn(), 0 S, Clock) > DOI_Timeout_ PS5 : F
DURATION (Attempting0ff(), 0 S, Clock) > DOI_Timeout_P5 : F
DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) : F
PRE(CON_Failure_P5) = False : F

END TABLE

END EXPORT

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

140 APPENDIX E. THE ASW IN RSML-£- PHASE 5

MACRO AttemptingOn()

TABLE
MON_DOI_P5 = Off : T
CON_DQI_P5 = On : T
END TABLE
END MACRO

MACRO AttemptingOff ()

TABLE
MON_DOI_P5 = On T
CON_DOI_PS = Off : T
END TABLE
END MACRO

MODULE_INSTANCE ThresholdedAlt_P5 : ThresholdedAltitude_P5
PARENT : NONE
ASSIGNMENT
Altitude_P5 := MON_Altitude_P5,
Threshold_P5 := Threshold_PS5,
BelowHysteresis_P5 := GoBelowHyst_P5,
AboveHysteresis_P5 := GoBelowHyst_P5
END ASSIGNMENT
END MODULE_INSTANCE

END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P5 :
INTERFACE :

IMPORT Altitude_P5 : Integer
UNITS : ft
EXPECTED_MIN : ©
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P5 : Integer
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P5 : Integer
UNITS : ft
EXPECTED_MIN : 50

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

141

EXPECTED_MAX : 500
END IMPORT

IMPORT CONSTANT BelowHysteresis_P5 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P5 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&
END EXPORT
END INTERFACE
DEFINITION :

EXPORT Result_P5 :
PARENT : NONE

DEFAULT_VALUE : Above IF
TABLE

DEFINED(Altitude_P5) T ;
Altitude_P5 > Threshold_P5 : T ;
END TABLE
DEFAULT_VALUE : Below IF
TABLE
DEFINED(Altitude_P5) : T
Altitude_P5 <= Threshold P5 : T ;
END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P5))

EQUALS Above IF

TABLE
DEFINED(Altitude_P5) : T,
Altitude_P5 > EffectiveThreshold_P5 : T ;
END TABLE

EQUALS Below IF

TABLE
DEFINED(Altitude_P5) : T ;
Altitude_P5 <= EffectiveThreshold_P5 : T ;
END TABLE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

142 APPENDIX E. THE ASW IN RSML-®- PHASE 5

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P5))
END EXPORT
STATE_VARIABLE ApplyHisteresis P5 :

VALUES : {NcHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE
DEFINED(Altitude_P5) : T
WHEN(Altitude_P5 < Threshold_PS, False) : T ;
END TABLE

TRANSITION NoHyst TO Below IF
TABLE
DEFINED(Altitude_P5) : T ;
WHEN(Altitude_P5 > Threshold_P5, False) :
END TABLE

—

TRANSITION Above TO NoHyst IF
TABLE
DEFINED(Altitude_P5) :TT;
WHEN(Altitude_P5 < Threshold_P5 + AboveHysteresis_P5, False) : ;
WHEN(Altitude_P5 > Threshold_P5 - BelowHysteresis_P5, False) : * T ;

-
*

END TABLE

TRANSITION Below TO NoHyst IF
TABLE
DEFINED(Altitude_P5) :TT;
WHEN (Altitude_P5 > Threshold_P5 + AboveHysteresis_P5, False) ;
WHEN (Altitude_P5 < Threshold_P5 - BelowHysteresis_P5, False) : x T ;

—-
*

END TABLE
END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold P5 : INTEGER
PARENT : NONE
UNITS : ft
EXPECTED_MIN : Threshold_P5 - BelowHysteresis_P5
EXPECTED_MAX : Threshold_P5 + AboveHysteresis_P5

DEFAULT_VALUE : Threshold_P5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

143

EQUALS Threshold P5 + AboveHysteresis_P5
IF ApplyHysteresis_P5 = Above

EQUALS Threshold_P5 - BelowHysteresis_P5
IF ApplyHysteresis_P5 = Below

EQUALS Threshold_P5
IF ApplyHysteresis_P5 = NoHyst

END STATE_VARIABLE
END DEFINITION
END MODULE
MODULE DOI_Action_P5 :
INTERFACE :

IMPORT MinDelay_P5 : TIME
END IMPORT

IMPORT MaxDelay_P5 : TIME
END IMPORT

IMPORT CONSTANT Direction_P5 : UpDownType
END IMPORT

IMPORT ThresholdedAltitude_P5 : AboveBelowType
END IMPORT

IMPORT AltitudeQuality P5 : AltitudeQualityType
END IMPORT

IMPORT ActionOK_P5 : Boolean
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT PerformAction_P5 : Boolean
END EXPQORT

END INTERFACE
DEFINITION :

EXPORT PerformAction_P5 :

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

144 APPENDIX E. THE ASW IN RSML~2- PHASE 5

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)
END EXPORT

STATE_VARIABLE intermnal P5 :
VALUES : {NoAction, Delayed, Perform}
PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE
MinDelay P5 > 0 S
ActionOK_P5S
WHEN (ThresholdedAltitude_P5
Direction_P5 = Below
WHEN (ThresholdedAltitude_P5
Direction_P5 = Above

END TABLE

Below)

Above)

L e A R |
e B I I I I

TRANSITION NoAction TO Peform IF

TABLE
MinDelay P5 > 0 S
ActionOK_P5
WHEN (ThresholdedAltitude_P5
Direction_P5 = Down
WHEN (ThresholdedAltitude_P5 = Above)
Direction_P5 = Up

END TABLE

Below)

LR e e B e |
- - * ¥] '7f

TRANSITION Delayed TO Perform IF
TABLE

DURATION(PRE(internal_P5) IN_STATE Delayed, 0 S, Clock) >= MinDelay P5 : T T ;
ActionOK_P5 :TT
AltitudeQuality_P5 = Valid :TT
Direction_P5 = Down : T %
ThresholdedAltitude_P5 = Below : T *
Direction_P5 = Up T
ThresholdedAltitude_P5 = Above % T

END TABLE

TRANSITION Delayed TO NoAction IF
DURATION(PRE(internal_P5) IN_STATE Delayed, O S, Clock) >= MaxDelay P5

TRANSITION Perform TO NoAction IF
DURATION(PRE(internal _P5) IN_STATE Perform, 0 S, Clock) >= 0 S

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

145

END STATE_VARIABLE

END DEFINITION

END MODULE

INCLUDE "standard-modules.nimbus"

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

146 APPENDIX E. THE ASW IN RSML~%#- PHASE 5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix F

The Altitude Switch in RSML¢-
Phase 6

/*L

In this chapter, we add to the REQ specification for the ASW a
specification of the ASW’s IN’ and OUT’ relations. These relations
are developed in a similar way to the REQ relation, but starting out
at a high level and then refining the structure and computation,
finally taking into consideration completeness and error handling
constraints.

For this Phase, we will be defining a number of new modules. The
Altimeters_IN_P6 module will transform the inputs from the digital altimeters

Lx/

INCLUDE "asw-alltypes.nimbus"

MODULE Altimeters_IN_P6 :
INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : 0
EXPECTED_MAX : 10

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : 0O
EXPECTED_MAX : 10

147

148 APPENDIX F. THE ASW IN RSML-%- PHASE 6

END IMPORT

IMPORT DigialAlt_P6 : (1 TO NumDigitalAlt] OF INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [1 TO NumAnalogAlt] OF AboveBelowType
END IMPORT

IMPORT DigitalQuality P6 : [1 TO NumDigitalAlt] OF AltitudeQualityType
END IMPORT

IMPORT AnalogQuality_P6 : [1 TO NumAnalogAlt] OF AltitudeQualityType
END IMPORT

IMPORT INTERFACE AltitudeVoter_P6 :
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType
END EXPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

149

END INTERFACE
DEFINITION :

MODULE_INSTANCE ThresholdedDigital P6 : [1 TO NumDigitalAlt] OF ThresholdedAltitude_P6
PARENT : NONE

ASSIGNMENT
Altitude_P6 = DigitalAlt_P6,
Threshold_P6 = EXTEND Threshold_P6 TO [1 TO NumDigitalAlt] OF INTEGER,

EXTEND GoAboveHyst_P6 TO [1 TO NumDigitalAlt] OF INTEGER,
EXTEND GoBelowHyst_P6 TO [i1 TO NumDigitalAlt] OF INTEGER

AboveHysteresis_P6 :
BelowHysteresis_P6 :
END ASSIGNMENT
END MODULE_INSTANCE

SLOT_INSTANCE AltitudeVoter_P6 :

ASSIGNMENT
Num_of_Alt = NumDigitalAlt_P6 + NumAnalogAlt_P6,
Altitudes = ThresholdedDigital P6.Result_P6 | AnalogAlt_P6,
Qualities = DigitialQuality_P6 | AnalogQuality_P6

END ASSIGNMENT
END SLOT_INSTANCE

EXPORT Altitude_P6 :
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6
EQUALS AltitudeVoter_P6.Altitude_P6

END EXPORT

EXPORT AltitudeQuality_P6 :
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6
EQUALS AltitudeVoter_P6.AltitudeQuality_P6

END EXPORT

END DEFINITION

END MODULE

INTERFACE AltitudeVoter_P6 :

IMPORT CONSTANT Num_of _Alt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : O
EXPECTED_MAX : 50

END IMPORT

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

150 APPENDIX F. THE ASW IN RSML~£- PHASE 6

IMPORT Altitudes_P6 : [1 TO Num_of Alt_P6] OF AboveBelowType
END IMPORT

IMPORT Qualities_P6 : [1 TO Num_of_Alt_P6] OF AltitudeQualityType
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT Quality_P6 : AltitudeQualityType
END EXPORT

END INTERFACE
MODULE Alt_and_Quality_P6 :
INTERFACE :

IMPORT Altitude_P6 : AboveBelowType
END IMPORT

IMPORT Quality_P6 : AltitudeQualityType
END IMPORT

EXPORT Result : Alt_and_QualityType
END EXPORT

END INTERFACE
DEFINITION :

EXPORT Alt_and_QualityType :
PARENT : NONE

EQUALS Above IF
TABLE

Altitude_P6 = Above : T ;
Quality_P6 = Valid T ;
END TABLE
EQUALS Below IF
TABLE
Altitude_P6 = Below : T ;
Quality_P6 = Valid : T ;

END TABLE

EQUALS Invaid IF Quality_P6 = Invalid

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

151

END EXPORT
END DEFINITION
END MODULE
MODULE Most_P6 : AltitudeVoter_P6
DEFINITION :

EXPORT Altitude_P6 :
PARENT : NONE

DEFAULT_VALUE : Below

EQUALS Below IF
COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Altit
EXTEND Below TO [1 TO Num_of Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6) >
COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Altit
EXTEND Above TO (1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

EQUALS Above IF
COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, (Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Altit
EXTEND Below TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6) <=
COUNT(EXTEND Alt_and_Quality P6(Altitudes_P6, Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Altit
EXTEND Above TO [1 TO Num_of Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :
PARENT : NONE
DEFAULT_VALUE : Valid

EQUALS Valid IF
EXISTS(Qualities_P6

EXTEND Valid TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt

EQUALS Invalid IF
FORALL(Qualities_P6

EXTEND Invalid TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_A

END EXPORT
END DEFINITION
END MODULE

MODULE AnyCrossed_P6 : AltitudeVoter_P6

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

152 APPENDIX F. THE ASW IN RSML~?- PHASE 6

DEFINITION :

EXPORT Altitude_P6 :
PARENT : NONE

DEFAULT_VALUE : Below
TRANSITION Below TO Above IF
EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Al
EXTEND Above TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
TRANSITION Above TO Below IF
EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO (1 TO Num_of_Alt_P6] OF Al
EXTEND Below TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
END EXPORT

EXPORT Quality_P6 :
PARENT : NONE

EQUALS Valid IF
EXISTS(Qualities_P6

EXTEND Valid TO [1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF
FORALL(Qualities_P8

EXTEND Invalid TO [1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)
END EXPORT
END DEFINITION

END MODULE

MODULE Al1Crossed_P6 : AltitideVoter_P6
DEFINITION :

EXPORT Altitude_P6 :
PARENT : NONE

DEFAULT_VALUE : Below
TRANSITION Below TO Above IF
FORALL(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO {1 TO Num_of_Alt_P6] OF Al
EXTEND Above TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

TRANSITION Above TO Below IF
FORALL(EXTEND Alt_and_GQuality_P6(Altitudes_P6, Qualities_P6) TO [t TO Num_of_Alt_P6] OF Al

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

153

EXTEND Below TO [1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
END EXPORT

EXPORT Quality_P6 :
PARENT : NONE

EQUALS Valid IF
EXISTS(Qualities_P6

EXTEND Valid TO [1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid TO [1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

END EXPORT
END DEFINITION

END MODULE

MODULE Failure_OUT_P6 :
INTERFACE :

IMPORT Failure_P6 : Boolean
END IMPORT

IMPORT Pulselnterval _P6 : TIME
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT Watchdog Pulse_P6 : Boolean
END EXPORT

END INTERFACE
DEFINITION :

EXPORT Watchdog_Pulse_P6 :
PARENT : NONE

DEFAULT_VALUE : false
TRANSITION False TO True IF

TABLE
DURATION(PRE(Watchdog_Pulse_P6) IN_STATE False, 0 S, Clock) >= Pulselnterval P6 : T ;

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

154 APPENDIX F. THE ASW IN RSML-£- PHASE 6

Failure_P6
END TABLE

TRANSITION True TO False IF
DURATION (PRE (Watchdog Pulse_P6) IN_STATE True, 0 S, Clock) >= 0 S

END EXPORT
END DEFINITION

END MODULE

MODULE ASW_REQ_P6 :
INTERFACE :

EXPORT CON_DOI_P6 : DOIControlledType
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be 0ff. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
L*&

Issues : &*L
\begin{myitemize}
\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?
\end{myitemize}

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

155

L*&
END EXPORT

EXPORT CON_Failure_P6 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. L*&

Interpretation : &L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L*&

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

END IMPORT

IMPORT MON_Altitude_Quality _P6 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L*&
END IMPORT

IMPORT MON_DOI_P6 : OnOffType_P6
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI L*x&

Interpretation : &*L
\begin{quote}
\begin{mydescription}

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

156 APPENDIX F. THE ASW IN RSML~£- PHASE 6

\item[On:] Indicates that the DOI is currently on.
\item[Off:] Indicates that the DOI is currently off.
\end{mydescription}

\end{quote}

L*&

END IMPORT
IMPORT MON_Reset_P6 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}
L&

END IMPORT
IMPORT MON_Inhibit_P6 : Boolean

Purpose : &+*L This variable is true when the ASW is inhibited and
false otherwise. The value is determined by the user and/or other
systems on board the aircraft. L&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the
DOI.
\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}
\end{quote}
L*g

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
UNITS : ft

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

157

EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. L#*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family
member. It is the length of time after which the ASW will
declare a failure if there is not valid altitude. Lx*&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time
UNITS : NA
EXPECTED_MIN : 1 s
EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of
the ASW family to represent the amount of time before the ASW
declares a failure if the DOI does not respond to a command. L*&
END IMPORT
IMPORT CONSTANT GoAboveAction P6 : ActionType
Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L*&
END IMPORT
IMPORT CONSTANT GoBelowAction_P6 : ActionType
Purpose : &*L This constant specifies the action that the ASW
will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

158 APPENDIX F. THE ASW IN RSML-E- PHASE 6

UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT
END INTERFACE
DEFINITION :
STATE_VARIABLE ASW_System_Mode_P6 :
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE
Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L*&
DEFAULT_VALUE : Startup
TRANSITION NormalOperating TO Reset IF MON_Reset_P6
TRANSITION Degraded TO Reset IF MON_Reset_P6

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor_P6 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality_P6 = Valid, 0 S, Clock) > 1 MIN

TRANSITION Reset TO NormalOperating IF
DURATION(PRE(ASW_System_Mode_P8), O s, Clock) >= 0 §

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

159

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P6 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functionality
mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DURATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock) > 1 S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION(MON_Altitude_Quality_P6 = Invalid, O S, Clock) »1 8 : T ;
DURATION(PRE(EpisodeMonitor_P6) = FirstEpisode) > 1 § 1T
END TABLE

TRANSITION FirstEpisode TO NoEpisode IF
DURATION (PRE(EpisodeMonitor_P6) = FirstEpisode) >= 1 MIN

TRANSITION QualifyingEpisode TO NoEpisode IF
DURATION(MON_Altitude_Quality_P6 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P6 : ASW_(Operating Mode_Def_P6
PARENT : ASW_System_Mode_P6.NormalOperating

ASSIGNMENT
MON_Altitude_P6

MON_Altitude_Quality_P6 :

MON_DOI_P6
MON_Inhibit_P6
Threshold_P6
Invalid_Alt_Failure_P6
DOI_Timeout_P6
GoAboveAction_P6
GoBelowAction_P6
GoAboveHyst_P6
GoBelowHyst_P6
DOI_Delay_P6
END ASSIGNMENT
END MODULE_INSTANCE

MON_Altitude_P6,
MON_Altidue_Quality_P6,
MON_DOI_PS6,
MON_Inhibit_P6,

= Threshold_P6,

Invalid_Alt_Failure_P6,
DOI_Timeout_P6,
GoAboveAction_P6,
GoBelowAction_P6,
GoAboveHyst_P6,
GoBelowHyst_P6,

0S8

Draft produced on September 29, 2002

UNIVERSITY OF MINNESOTA

160

APPENDIX F. THE ASW IN RSML-£- PHASE 6

MODULE_INSTANCE ASW_Degraded_Mode_P6 :
ASW_System_Mode_P6.Degraded

PARENT :
ASSIGNMENT
MON_Altitude_P6

MON_DOI_P6
MON_Inhibit_P6
Threshold_P6
Invalid_Alt_Failure_P6
DOI_Timeout_P6
GoAboveAction_P6
GoBelowAction_P6
GoAbovelyst_P6
GoBelowHyst_P6
DOI_MinDelay_P6
DOI_MaxDelay_P6
END ASSIGNMENT
END MODULE_INSTANCE

EXPORT CON_DOI_P6 :
PARENT : NONE
DEFAULT_VALUE :

Uncontrolled

MON_Altitude_Quality P6 :=

ASW_Operating_Mode_Def_P6

MON_Altitude_P6,
MON_Altidue_Quality_P6,
MON_DOI_P6,
MON_Inhibit_P6,
Threshold_P6,
Invalid_Alt_Failure_P6,
DOI_Timeout_P6,
GoAboveAction_P6,
GoBelowAction_P6,
GoAboveHyst_P6,
GoBelowHyst_P6,

28,

6 S

EQUALS ASW_Operating_Mode_P6.CON_DOI_P6
IF ASW_System_Mode_ P6 = NormalOperating

EQUALS ASW_Degraded_Mode_P6.CON_DOI_P6
IF ASW_System_Mode_P6 = Degraded

EQUALS Uncontrolled IF
TABLE

ASW_System_Mode_P6 = Failed : T * ;
ASW_System_Mode_P6 = Reset : * T ;
END TABLE
END EXPORT

EXPORT CON_Failure_P6 :
PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P6 = NormalOperating
ASW_Operating_Mode_P6.CON_Failure_P6
ASW_System_Mode_P6 = Degraded

ASW_Operating_Mode_P6.CON_Failure P6

* x = =3
L B I R 4

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

161

END TABLE
TRANSITION True TO False IF ASW_System_Mode_P6 = Reset
END EXPORT
END DEFINITION

END MODULE

MODULE ASW_OperatingMode_Def_P6 :
INTERFACE :

EXPORT CON_DOI_P6 : DOIControlledType
END EXPORT

EXPORT CON_Failure_P6 : Boolean
END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType
END IMPORT

IMPORT MON_Altitude_Quality _P6 : AltitudeQualityType
END IMPORT

IMPORT MON_DOI_P6 : OnOffType_P6
END IMPORT

IMPORT MON_Inhibit_P6 : Boolean
END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time
UNITS : NA
EXPECTED_MIN : 1 s

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

APPENDIX F. THE ASW IN RSML-Z- PHASE 6

EXPECTED_MAX : 5 s
END IMPORT

IMPORT CONSTANT GoAboveAction P6 : ActionType
END IMPORT

IMPORT CONSTANT GoBelowAction_P6 : ActionType
END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay_P6 : TIME
Purpose : &+*L This parameter to the ASW operating module
determines whether or not we will wait to turn the DOI on. If it
is greater than zero, then we will wait. It represents the
minium waiting time L*&

END IMPORT

IMPORT DOI_MaxDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module
determines the maximum waiting time that we will stay inm a
Delayed action state before giving up and returning to NoAction
L&

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_DOI_P6 :
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

UNIVERSITY OF MINNESOTA

Draft produced on September 29, 2002

163

TABLE
GoBelowAction = TurnOn : T %
ActionBelow_P6.PerformAction_P6 : T *
GoAboveAction = TurnOn : * T
ActionAbove_P6.PerformAction_P6 o * T

END TABLE

TRANSITION Uncommanded TO O0ff IF

TABLE
GoBelowAction = TurnOff T *
ActionBelow_P6.PerformAction_P6 T *
GoAboveAction = TurnQff cx T
ActionAbove_P6.PerformAction_P6 : * T ;

END TABLE
TRANSITION On TO Uncommanded IF WHEN(MON_DQI_P6 = On, False)
TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P6 = 0ff, False)
END EXPORT

MODULE_INSTANCE ActionBelow_P6 : DOI_Action_P6
PARENT : NONE

ASSIGNMENT
Direction_P6 := Down,
ThresholdedAltitude_P6 := MON_Altitude_P6,
MinDelay_P6 := DOI_MinDelay_P6,
MaxDelay_P6 := DOI_MaxDelay_P6,
AltitudeQuality_P6 := MON_AlitudeQuality_P6,
ActionOK_P6 := DOI_Action_Ok_P6(),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P6 : DOI_Action_P6
PARENT : NONE

ASSIGNMENT
Direction_P6 1= Up,
ThresholdedAltitude_P6 := MON_Altitude_P6,
MinDelay_P6 1= DOI_MinDelay_P6,
MaxDelay_P6 := DOI_MaxDelay_P6,
AltitudeQuality_P6 := MON_AlitudeQuality_P6,
ActionOK_P6 := DOI_Action_0Ok_P6(),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MACRO DOI_Action_Ok_P6(act IS ActionType)

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

164 APPENDIX F. THE ASW IN RSML-£- PHASE 6

TABLE
MON_Inhibit_P6
CON_Failure_P6
MON_DOI_P6 = On
act = On
MON_DOI_P6
act = 0ff

END TABLE

END MACRO

0ff

* * ' = MM
Lo T TR I S e |

EXPORT CON_Failure_P6 :
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE

DURATION(AttemptingOn(), O S, Clock) > DOI_Timeout_P6 T * * * ;
DURATION (Attempting0ff(), O S, Clock) > DOI_Timeout_P6 * T * x ;
DURATION(MON_Altitude_Quality_P6 = Invalid, O S, Clock) * *x T % ;
PRE(CON_Failure_P6) = False * x x T ;

END TABLE

EQUALS FALSE IF

TABLE
DURATION(AttemptingOn(), O S, Clock) > DOI_Timeout_P6 : F
DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6 : F
DURATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock) : F
PRE(CON_Failure_P6) = False : F ;

END TABLE

END EXPORT

MACRO AttemptingOn()

TABLE
MON_DOI_P6 = 0ff : T
CON_DOI_P6 = (On : T
END TABLE
END MACRO

MACRO AttemptingOff ()

TABLE
MON_DOI_P6 = On : T ;
CON_DOI_P6 = Off : T
END TABLE
END MACRO

END DEFINITION

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

165

END MODULE

MODULE ThresholdedAltitude_P6 :
INTERFACE :

IMPORT Altitude_P6 : Integer
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : Integer
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P6 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P6 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P6 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is
above or below the threshold given the hysteresis factor Lx&

END EXPORT
END INTERFACE
DEFINITION :

EXPORT Result_P6 :
PARENT : NONE

DEFAULT_VALUE : Above IF
TABLE
DEFINED(Altitude_P6) : T

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

166 APPENDIX F. THE ASW IN RSML-£- PHASE 6

Altitude_P6 > Threshold_P6 : T ;
END TABLE

DEFAULT_VALUE : Below IF

TABLE
DEFINED (Altitude_P6) : T
Altitude_P6 <= Threshold_P6 : T ;
END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P6))

EQUALS Above IF

TABLE
DEFINED(Altitude_P6) : T
Altitude_P6 > EffectiveThreshold P6 : T ;
END TABLE

EQUALS Below IF

TABLE
DEFINED(Altitude_P6) A
Altitude_P6 <= EffectiveThreshold P6 : T ;
END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P6))
END EXPORT
STATE_VARIABLE ApplyHisteresis P6 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE
DEFINED(Altitude_P6) : T
WHEN(Altitude_P6 < Threshold_P6, False) : T ;
END TABLE

TRANSITION NoHyst TO Below IF
TABLE
DEFINED(Altitude_P6) : T ;
WHEN (Altitude_P6 > Threshold_P6, False)
END TABLE

—

TRANSITION Above TD NoHyst IF
TABLE
DEFINED(Altitude_P6) :TT;

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

167

WHEN(Altitude_P6 < Threshold_P6 + AboveHysteresis_P6, False) : T * ;
WHEN(Altitude_P6 > Threshold_P6 - BelowHysteresis_P6, False) : * T ;

END TABLE
TRANSITION Below TO NoHyst IF
TABLE
DEFINED(Altitude_P6) :TT
WHEN(Altitude_P6 > Threshold_P6 + AboveHysteresis_P6, False) : T x ;
WHEN(Altitude_P6 < Threshold_P6 - BelowHysteresis_P6, False) : * T ;

END TABLE
END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P6 : INTEGER
PARENT : NONE
UNITS : ft
EXPECTED_MIN : Threshold_P6 - BelowHysteresis_P6
EXPECTED_MAX : Threshold_P6 + AboveHysteresis_P6
DEFAULT_VALUE : Threshold_P6

EQUALS Threshold_P6 + AboveHysteresis_P6
IF ApplyHysteresis_P6 = Above

EQUALS Threshold_P6 - BelowHysteresis_P6
IF ApplyHysteresis_P6 = Below

EQUALS Threshold_P6
IF ApplyHysteresis_P6 = Nolyst

END STATE_VARIABLE
END DEFINITION
END MODULE
MODULE DOI_Action_P6 :
INTERFACE :

IMPORT MinDelay_P6 : TIME
END IMPORT

IMPORT MaxDelay P6 : TIME
END IMPORT

IMPORT CONSTANT Direction_P6 : UpDownType

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

168 APPENDIX F. THE ASW IN RSML-£- PHASE 6

END IMPORT

IMPORT ThresholdedAltitude_P6 : AboveBelowType
END IMPORT

IMPORT AltitudeQuality_P6 : AltitudeQualityType
END IMPORT

IMPORT ActionQK_P6 : Boolean
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT PerformAction_P6 : Boolean
END EXPORT

END INTERFACE
DEFINITION :

EXPORT PerformAction_P6 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)
END EXPORT

STATE_VARIABLE internal_P6 :
VALUES : {NoAction, Delayed, Perform}
PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE
MinDelay_P6 > 0 S
ActionOK_P6
WHEN (ThresholdedAltitude_P6
Direction_P6 = Below
WHEN (ThresholdedAltitude_P6
Direction_P6 = Above

END TABLE

Below)

Above)

* * 3343
L I R e B |

TRANSITION NoAction TO Peform IF
TABLE
MinDelay P6 > O S : FF
ActionOK_P6 : T ;
WHEN (ThresholdedAltitude_P6 = Below) : T * ;

—

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

169

Direction_P6 = Down : T *

WHEN(ThresholdedAltitude_P6 = Above) : * T ;

Direction_P6 = Up I
END TABLE

TRANSITION Delayed TO Perform IF

TABLE
DURATION(PRE(internal_P6) IN_STATE Delayed, O S, Clock) >= MinDelay_P6 :
ActionQOK_P6
AltitudeQuality_P6 = Valid
Direction_P6 = Down
ThresholdedAltitude_P6
Direction_P6 = Up
ThresholdedAltitude_P6 = Above

END TABLE

Below

* % =1 3 934
- - % = =

TRANSITION Delayed TO NoAction IF
DURATION(PRE(internal P6) IN_STATE Delayed, O S, Clock) >= MaxDelay_P6

TRANSITION Perform TO NoActiom IF
DURATION(PRE(internal_P6) IN_STATE Perform, 0 S, Clock) >= 0 S

END STATE_VARIABLE
END DEFINITION
END MODULE

INCLUDE "standard-modules.nimbus"

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

170 APPENDIX F. THE ASW IN RSML-£- PHASE 6

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Bibliography

(1]
2]
3]

(4]
[5}

(6]
(7]
8]
[9]

(10]

(11]

(12]

(13]

L. Abraido-Fandino. An overview of REFINE 2.0. In Proceedings of the second symposium on
knowledge engineering, Madrid, Spain, 1987.

Mark A. Ardis and David M. Weiss. Defining familics: The commonality analysis. In Nineteenth
International Conference on Software Engineering (ICSE’97), pages 649-650, 1997.

J.M. Atlec and M.A. Buckley. A logic-model semantics for SCR software requirements. In S.J. Zeil,
editor, Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’96), pages 280-292, January 1996.

B. Auernheimer and R. A. Kemmerer. RT-ASLAN: A specification language for real-time systems.
IEEE Transactions on Software Engineering, 12(9), Septerber 1986.

D. Batory and S. O’Mally. The design and implementation of hierarchical software systems with
reusable components. ACM Transactions on Software Engineering and Methodology, 1(4):355-398,
October 1992,

J.L. Bentley. Programming pearls: Little languages. Communications of the ACM, 29(8):711-721,
August 1986.

Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley, 2000.

Rodncy A. Brooks. A robust laycred control system for a mobile robot. IEEE Journal of Robotics
and Automation, RA-2(1):14-23, March 1986.

Lisa Brownsword and Paul Clements. A casc study in successful product line development. Technical
Report CMU/SEI-96-TR-016, Software Enginecring Institute, Carnegie-Mellon University, October
1996.

G. Campbell, J O’Connor, C. Mansour, and J. Turner-Harris. Reuse in command and control systems.
IEEE Software, 11(5):70-79, September 1994.

Grady H. Jr. Campbell, Stuart R. Faulk, and David M. Weiss. Introduction to synthesis. Technical
Report INTRO-SYNTHESIS-PROCESS-90019-N, Software Productivity Consortium, Herdon, VA,
1990.

W. Chan, R.J. Andcrson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D. Reese. Modecl
checking large software specifications. JEEE Transactions on Software Engineering, 24(7):498-520,
July 1998.

A. M. Davis. Operational prototyping: A new development approach. IEEE Software, 6(5), September
1992.

171

172 BIBLIOGRAPHY

(14] Debra M. Erickson. Structuring formal requirements specifications for reuse: A mobile robotics case
study. Masters Project, University of Minnesota, April 2000.

[15] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical systems. /EEE
Software, vol-11(1):21--39, January 1994.

[16] S. Gerhart, D. Craigen, and T. Ralston. Formal methods reality check: Industrial usage. [EEE
Transactions on Software Engineering, 21(2):90-98, February 1995.

[17] Nancy G.Leveson. Intent specifications:an approach to building human-centered specifications.

(18] H. Gomaa. Rcusable software requirements and architectures for familics of systems. Journal of
Systems and Software, 25(3):189-202, August 1995.

[19] Carl A. Gunter, Elsa L. Gunter, Michacl Jackson, and Pamela Zave. A reference model for require-
ments and specifications. IEEE Software, 17(3):37-43, May/June 2000.

[20] D. Harcl. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231-274, Junc 1987.

(21) D. Harel, H. Lachover, A. Naamad, A. Pnucli, M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. Statemate: A working environment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering, 16(4):403-414, April 1990.

[22] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency in hicrarchical state-base
requirements. I[EEE Transactions on Software Engineering, 22(6):363-377, June 1996.

[23] Mats P.E. Heimdahl, Jeffrey M. Thompson, and Barbara J. Czerny. Specification and analysis of
intercomponent communication. IEEE Computer, pages 47-54, April 1998.

[24] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR": A toolsct for specifying and analyzing
requirements. In Proceedings of the Tenth Annual Conference on Computer Assurance, COMPASS
95, 1995.

[25] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency checking of SCR-style requirernents speci-
fications. In Proceedings of the Second IEEE International Symposium on Reguirements Engineering,
March 1995.

[26] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency checking of requirements
specifications. ACM Transactions on Software Engineering and Methodology, 5(3):231-261, July 1996.

[27] K.L. Heninger. Specifying software requirements for complex systems: New techniques and their
application. IEEE Transactions on Software Engineering, 6(1):2-13, Januaray 1980.

(28] K.L. Heninger, J.W. Kallander, J.E. Shore, and D.L. Parnas. Software Requircients for the A-7e
Aircraft. Technical Report 3876, Naval Rescarch Laboratory, Washington, D.C., November 1978.

[29] Michael Jackson. Software Requirements and Specifications. ACM Press and Addison-Wesley, 1995.

[30] Michael Jackson. The world and the machine. In Proceedings of the 1995 Internation Conference on
Software Engineering, pages 283-292, 1995.

[31] Michael Jackson. Problem Frames: Analyzing and Structuring Software Development Problems. ACM
Press and Addison-Wesley, 2001.

[32] Michael Jackson and Pamela Zave. Domain descriptions. In Proceedings of the IEEE International
Symposium on Requirements Engineering, pages 56-64, 1992,

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

BIBLIOGRAPHY 173

(33

[34]

[35]
(36]

[37]

(38]
[39]

[40]
[41]

(44]

[45]
[46]
(47]

(48]

[49]

Michael Jackson and Pamela Zave. Deriving specifications from requirements: An example. In
Proceedings of the Seventeenth International Conference on Software Engineering (ICSE’95), pages
15-24, May 1995.

Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E. Melhart. Software require-
ments analysis for real-time process-control systems. [EEE Transactions on Software Engineering,
17(3):241-258, March 1991.

Mechdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architecture for Product Fami-
lies: Principles and Practice. Addison-Wesley, 2000.

B. Kramer, Luqi, and V. Berzins. Compositional semantics of a real-time prototyping language. IEEE
Transactions on Software Engineering, 19(5):453-477, May 1993.

Juha Kuuscla and Juha Savolainen. Requirements engineering for product families. In Proceedings of
the Twenty-Second International Conference on Software Engineering (ICSE ’00), pages 60-68, June
2000.

W. Lam. Creating reusable architectures: Initial cxperience report. ACM SIGSOFT Software Engi-
neering Notes, 22(4):39-43, 1997.

W. Lam, J.A. McDermid, and A.J. Vickers. Ten steps towards systematics requiremens reuse. Re-
quirements Engineering, 2(2):120-113, 1997.

Nancy G. Leveson. Sample tcas intent specification.

Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese. Designing Specification Languages
for Process Control Systems: Lessons Learned and Steps to the Future. In Seventh ACM SIGSOFT
Symposium on the Foundations on Software Engineering, volume 1687 of LNCS, pages 127-145,
September 1999. -

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements Specification for Process-
Control Systems. IEEE Transactions on Software Engineering, 20(9):684-706, Scptember 1994.

David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter
Mann. Specification and analysis of system architecture using Rapide. IEEE Transactions on Software
FEngineering, 21(4):336-354, April 1995.

David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Belz. Partial orderings
of cvent scts and their application to prototyping concurrent timed systems. Journal of Systems
Software, 21(3):253-265, Junc 1993.

Luqi. Real-time constraints in a rapid prototyping language. Computer Languages, 18(2):77-103,
1993.

Lugi and V. Berzins. Exccution of a high level real-time language. In Proceedings of the Real-Time
Systems Symposium, 1988.

Robyn R. Lutz. Extenting the product family approach to support safe reuse. Journal of Systems
and Software, 53:207-217, 2000.

Steven P. Miller and Alan C. Tribble. Extending the four-variable model to bridge the system-software
gap. In Proceedings of the Twentith IEEE/AIAA Digital Avionics Systems Conference (DASC'01),
October 2001.

J. Neighbors. The draco approach to constructing sofware from rcusable components. IEEE Trans-
actions on Software Engineering, 10(5):564-574, 1984.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

174 BIBLIOGRAPHY

[50] D.L. Parnas. On the criteria to be used in decomposing a system into modules. Communications of
the ACM, 15:1053-1058, December 1972.

[51] D.L. Parnas. On the design and development of program families. IEEE Transactions on Software
Engineering, 2(1):1-9, March 1976.

[52] D.L. Parnas. Designing software for case of extension and contraction. In Third International Con-
ference on Software Engineering, 1978.

[63] D.L.Parnas and P.C. Clements. A rational design process: How and why to fake it. JEEE Transactions
on Software Engineering, 12(2):251-257, 1986.

[54] D.L. Parnas and J. Madey. Functional documentation for computer systems engineering. Science of
Computer Programming, 25(1):41-61, 1991.

[55] Praxis Critical Systems Limited. REVEAL: A Keystone of Modern Systems Engineering, issue 1.1
edition, July 2000.

[56] R. Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Software Engineering Notes,
15(2):47-54, 1990.

[67] Softwarc Productivity Consortium. Consortium Requirements Engineering Handbook, 1993. SPC-
92060-CMC.

[58] Jeffrey M. Thompson. NIMBUS: A framework for static analysis and simulation of system-level inter-
component comrmunication. Master’s thesis, University of Minnesota, Decernber 1999,

[69] Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller. Specification based prototyping
for embedded systems. In Seventh ACM SIGSOFT Symposium on the Foundations on Software
Engineering, number 1687 in LNCS, pages 163-179, September 1999.

[60] Jeffrey M. Thompson, Michael W. Whalen, and Mats P.E. Heimdahl. Requirements capture and
evaluation in NIMBUS: The light-control case study. Journa!l of Universal Computer Science, 6(7):731-
757, July 2000.

[61] Jeffrey Michael Thompson. Structuring Formal State-Based Specifications for Reuse and the Devel-
opment of Product Families. PhD thesis, University of Minnesota, 2002.

[62] David M. Weiss. Defining families: The commonality analysis. Technical report, Lucent Technologies
Bell Laboratories, 1000 E. Warrenville Rd, Naperville, IL 60566, 1997.

[63] David M. Weiss and Chi Tau Robert Lai. Software Product Line Engineering: A Family-Based
Software Development Process. Addison-Wesley, 1999.

[64] Michacl W. Whalen. A formal semantics for RSML ™€, Master’s thesis, University of Minnesota, May
2000.

(65] P. Zave. An insider’s evaluation of PAISLey. JEEE Transactions on Software Engincering, 17(3),
March 1991.

[66] Pamcla Zave. Four dark corners of requirements engincering. ACM Transactions on Software Engi-
neering and Methodology, 6(1):1-29, January 1997.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Department of Computer Science and Engineering
4-192 EE/CS Building

200 Union Street SE

Minneapolis, Minnesota

Appendix B - Jeffrey M. Thompson’s Dissertation

Final Report Page 11 of 12

Final Report Page 12 of 12

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Jeffrey Michael Thompson

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Dr. Mats P.E. Heimdahl and Dr. Maria Gini
Name of Faculty Adviser(s)

Signature of Faculty Adviser(s)

Date

GRADUATE SCHOOL

Structuring Formal State-Based Specifications
for Reuse and the Development of Product Families

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Jeffrey Michael Thompson

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Dr. Mats P.E. Heimdahl and Dr. Maria Gini, Advisor
June, 2002

© Jeftrey Michael Thompson 2002

Dedication

To my dear friends, Mike, Tim,
Andy, and Jeffrey who provided

support and encouragement.

To my family, who provided my

foundation.

Acknowledgments

I would like to again thank all my family and friends for their support and encour-
agement as I have finished up my doctoral work.

I am indebted to my committee who have provided guidance and support. Niko-
laos Papanikolopoulos who has written recommendation letters for me resulting in
my successful application for the Doctoral Dissertation Fellowship. Maria Gini who
taught me about mobile robotics, was my co-advisor, and agreed to serve both on my
Masters degree and Doctoral degree committees and Rajesh Rajamani who has also
served on both my Masters and Doctoral degree committees.

Steve Miller from the Rockwell-Collins Advanced Technology center has been an
invaluable resource for the work that is presented in this dissertation. Steve’s years
of experience in safety-critical systems have been essential to the evaluation of the
work presented herein.

I would especially like to thank Mike Whalen for his insight, knowledge, and
support. Mike and I have went through the entire graduate school process together
and his ideas, and insights are woven into the work presented here. I cannot imagine
what my graduate school experience, or life, would have been like without Mike.

Finally, I would like to thank my primary co-advisor, Mats Heimdahl. First, for
encouraging me to get a doctorate in the first place. Second, for his unwavering
support, patience, and dedication as I undertook the work. I will always be happy to

have attended graduate school with Mats as my advisor.

i

Abstract

The software in a safety critical system has the potential to cause loss of life, loss
of property/money, or environmental disaster. Researchers have found that most
safety-critical errors are introduced in the requirements, rather than the design and
implementation stages of development. These errors are conceptual in nature and
reflect misunderstandings about the intended operation of the system or the system’s
environment. Furthermore, requirements for safety critical systems can be difficult
to express: the software must interact with a variety of analog and digital compo-
nents and be able to detect and recover from error conditions in the environment. To
compound the problems, a requirements specification goes through many changes be-
fore it is completed—these changing requirements are a major cost driver in industrial
projects.

A mathematically precise, or formal, specification of the requirements provides
an unambiguous representation; therefore, use of a formal specification language to
model the requirements promises to improve the quality of (and thus, assurance in)
the requirements. Nevertheless, formal specifications are costly to develop and little
research has been conducted on structuring formal requirements specifications. In
most cases, there is a lack of a clear methodology for specification development.
Ideally, such specifications would be easy to maintain and reuse, particularly in light
of the fact the many companies build families of related systems. Unfortunately, this
is beyond the current state-of-the-art and is a critical barrier to industrial acceptance
of these techniques.

To address these concerns, this dissertation makes three key contributions. First,

iii

we have extended the state-of-the-art in expressing the structure of product fam-
ilies. Second, we have defined a methodology for creating formal specifications of
safety-critical process-control systems that includes the overall process for creating
the specifications as well as techniques directed specifically at reuse. Finally, a mod-
ule construct designed to support the methodology and product family structuring

has been added to the formal specification language RSML™°.

iv

Contents

1 Introduction

1.1 Contributions

1.2 Organization

Related Work

21 Early Work

2.2 Product Family Engineering
221 Background
2.2.2 Product Family Research Concentrations
2.2.3 Software Architecture and Software Structuring
2.2.4 Product Family Summary

2.3 Methodological Background
2.3.1 Introduction to Process-Control Systems
2.3.2 The Four Variable Model and CoRE
2.3.3 The WRSPM Model and REVEAL

24 Summary

Case Studies

3.1 Altitude Switch (ASW) L
3.2 Mobile Robotics (MR)
3.3 Flight Guidance System (FGS)
3.4 Introduction to RSML™®

10
11
11
14
20
21
22
23
25
30
34

35 SUMMATY o o v vt it e e e 50

Product Family Structuring 53
4.1 Extending Product Families 54
4.1.1 n-Dimensional Product Families 54
4.1.2 Hierarchical Product Families 56
4.1.3 Constraints on the Solution 58
4.2 Structuring Techniqueo 58
4.2.1 Representing Hierarchical Product Families 59
4.2.2 Intersection of Sub-Families 61
4.2.3 Addressing Existing Issues, 63
4.3 Flight Guidance System 66
4.4 Altitude Switch (ASW) oo 69
441 Commonalities and Variabilities for the ASW 69
4.4.2 Structure and Members of the ASW Family 75
4.5 Mobile Robotics 79
4.5.1 Hardware Dimension 79
4.5.2 Behavioral Dimension 83
453 The Whole Family 86
4.6 Evaluation and Summaryo 88
Methodology Foundations 94
5.1 The FORMpcs System Model 95
5.2 The FORMpcg Process Framework 97
521 The ASWExample 99
5.2.2 The Mobile Robotics Example 101
5.2.3 Process Summary 106

vi

5.3 Languages and Tools to Support FORMpes

5.3.1 Simulations of the ASW
5.3.2 Simulations of the Mobile Robotics
54 Summary
Methodology Overview
6.1 FORMpcs Process Phases
6.1.1 Commonality Analysis
6.1.2 Environmental Variables
6.1.3 Initial Structure L
6.1.4 Draft Specification
6.1.5 Detailed Requirements
6.1.6 Sensors and Actuators,
6.1.7 Iteration Among the Phases
6.2 Languages for FORMpes
6.3 Summary
Module Construct for RSML™°
7.1 Overview. e
7.2 General Usage
7.3 Module Instances Within the Hierarchy
7.4 Initial Values L
7.5 Functional Module Syntax
7.6 Module Interfaces as Imports
7.7 Conclusion

Conclusion and Future Directions

8.1 Conclusions e

vii

119
120
120
125
130
132
139
144
148
152
155

156
156
159
164
165
168
171
173

175

8.2 Future Directions e 179

Bibliography 182
A Standard Modules for RSML™° 193
B The ASW REQ Model (Phase 5) 210

C The ASW SOFT Model (Phase 6) 227

viii

1.1

21
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4

3.5
3.6

4.1
4.2
4.3
4.4

List of Figures

Framework of Contributions. Bubbles with a bold outline indicate ar-
eas of contribution by this dissertation; bubbles with a grey background

indicate areas where significant research results have been achieved. .

An overview of a domain engineering process
Cost-benefit analysis of software product-line engineering
A basic process-control modelo
The four-variable model. L.
The world, requirements, specification, program, and machine (WR-

SPM)model [32].

Pictures of the Mobile Robots (Photo by Timothy F. Yoon)
The FGS Level 0 context diagram
The definition of the Normal state variable
A summary of the standard mathematical and relational expressions
supported in RSML™o
A summary of the previous value expressions supported in RSML™° .

The array expressions currently supported in RSML™®

FGS product family covering flying craft
A simple product family 0L
Hierarchical decomposition and subset structure

Abstract versus non-abstract families

1x

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4

3.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12
5.13

Set intersection and non-hierarchical structure 62

Set representation of a near-commonality 64
Example of sub-familiesof FGS 67
The ASW family structure visualized in 2 dimensions 76
The structure of the Altitude Dimension for the ASW 77
A tabular representation of the ASW family decision model 79
The mobile robot family along the hardware dimension 86
A possible 2-dimensional view of the robot product-line 87
Cost-benefit of the FGS Family 92
The FORMpcs system model adapted from [83,109] 96
Refining REQ to SOFT 98
The true altitude is mapped to three software inputs. 100
Macro modified to handle the tree inputs instead of the true altitude

asit did inthe REQ model. 102
Mobile Robotics platform Random Exploration REQ relation 103
The definition of the Normal state variable 104
The NIMBUS Environment 108
The architecture of the NIMBUS environment 109
The main window of the NIMBUS Manager 110

The REQ relation can be evaluated using text files or user input (a)

or interacting with a simulation of the environment (b). 112
The ASW Excel REQ environment 114
A mockup of the Pilot’s display for the REQ model 115
Refined models of the environment; (a) using Excel to simulate the

physical process as well as the sensors and (b) using Excel to simulate

the physical process and RSML™® models to model the sensors. 116

5.14 Summary of the hardware-in-the-loop simulations performed with the

mobile robotics platformso

6.1 A tabular representation of the ASW family decision model
6.2 The CON_DOI variable in Phase 2 of the methodology
6.3 The System Context Diagram for the ASW in this Phase
6.4 The ThresholdedAltitude Interface in Phase 3
6.5 The CON_Failure variable in Phase 4 of FORMpes
6.6 The CON_DOI variable in Phase 4
6.7 The CON_Failure variable in Phase Five
6.8 The ASW_System_Mode variable in Phase 5
6.9 The EpisodeMonitor variable in Phase 5
6.10 The Definition of the Altimeters IN module

7.1 The ASW_REQ module, interface diagram
7.2 Initial Values of State Variable
7.3 The ASW_REQ’ model illustrating the utility of nested interface defi-

nitions e e e e

8.1 Framework of Contributions. Bubbles with a Bold outline indicate ar-
eas of contribution by this dissertation; bubbles with a grey background

indicate areas where significant research results have been achieved. .

xi

177

Chapter 1

Introduction

Software plays an increasingly important role in safety-critical systems. An error in
such systems has the potential to cause loss of life, environmental disaster, or loss
of property/money. Examples include medical devices, avionics systems, anti-lock
brakes, and control of nuclear power plants. Unfortunately, the state-of-the-art in
software development for critical systems does not provide industry with the theory,
tools, and techniques to produce the high-quality software needed at a reasonable
cost; the software is often poorly engineered, has hidden errors, and is very expensive
to develop. Therefore, techniques to help increase the quality of software while at the
same time reduce its cost are of utmost importance.

Software development typically begins with a high-level concept for a new system.
Next, a document describing the intended software behavior, i.e., the requirements
of the software, is written (called the requirements specification). Exactly how the
software accomplishes the requirements is determined in the software design and
implementation phase, where the actual working program is constructed. After the
implementation phase, the working program is tested to detect and eliminate errors.
Finally, the software is taken into operation.

Researchers have found that most errors leading to an accident are introduced in
the requirements stage, rather than the design and implementation stages. Tradi-
tionally, requirements specifications have been written in a natural language, such as

English. Unfortunately, these natural language specifications are inherently ambigu-

ous and unclear. Therefore, during the design and implementation, misunderstand-
ings of the requirements often lead to design and implementation mistakes that may
cause accidents. To combat this issue, a formal specification language can be used to
describe the requirements.

A formal specification language has a mathematically well defined semantics; thus,
a requirements specification expressed in such a language has a precise and unam-
biguous meaning. Another advantage of formal specifications is that they can be sup-
ported by tools that allow for visualization, animation, and mathematical analysis of
the requirements. One such formal specification language is RSML ™ (Requirements
State Machine Language without Events) [39].

Despite these advantages, formal specification languages have not achieved wide-
spread use in industry. One major obstacle is lack of guidance on the process of writing
a formal requirements specification and descriptions of the most effective techniques
for capturing the requirements in the desired language. Although some work has been
done on such guidelines, it is fragmented and incomplete. Another barrier is cost:
although the use of formal requirements specifications holds the potential to reduce
overall development costs, formal requirements specifications are typically much more
costly to develop than their natural language counterparts.

In today’s marketplace, many companies that build critical systems often create
lines of similar products, or product families. Product family members (i.e., the
individual products) share many common features (called commonalities) but vary
in certain well-defined ways (called variabilities). The concept of a product family
is well-understood in most industries. For example, in the auto industry, many cars
from the same maker might share parts; some cars are even built on the same chassis
with different sheet metal and trim, e.g., the Chrysler Concorde and Dodge Intrepid,

or the Ford Taurus and Mercury Sable. Unfortunately, in the software industry it is

common to see different (but related) products being developed by different project
teams with little coordination and essentially no reuse.

This duplication of effort is costly; and, considering the cost of creating a formal
specification, creating a completely original formal specification for each family mem-
ber is out of the question. Therefore, reuse of the formal requirements specifications
in the context of product families is absolutely essential for successful adoption by
industry of these techniques. Fortunately, a formal foundation for the requirements

should make reuse easier than with traditional, informal techniques.

1.1 Contributions

The basic problem addressed by this dissertation is the underutilization of formal
requirements specification languages in industry. This work reduces a major barrier
to industrial acceptance of formal specification techniques through the development
of a set of guidelines, i.e., a methodology, for the creation of formal requirements
specifications for safety-critical systems.

The methodology must address how to organize, or structure, the requirements.
This research has produced structuring techniques which support the development of
software families (for example, a line of pacemakers for different heart conditions),
as well as more ad-hoc techniques suitable for special situations. The techniques are
illustrated in formal specification language RSML™°.

Structuring techniques for requirements are best supported by special require-
ments specification language features that allow related pieces of the formal specifi-
cation to be grouped together. However, researchers have focused on the development
of tools to assist in the creation of formal requirements, analysis of the requirements,
and execution of the formal specifications, but not on techniques describing how to

create the specifications. Thus, many formal specification languages lack such an

organizational construct. A part of the research was to design an organizational
construct for RSML™¢. This construct facilitates the techniques presented in the
methodology and allows RSML™° to be used in more extensive, industrial-sized case
examples.

Finally, the methodology integrates many existing techniques and previous work.
This makes the methodology comprehensive: practitioners who wish to apply these
techniques to their own systems will not have to read volumes of research journals.
Rather, the essentials of the current state-of-the-art, including my own work described
above, will be presented in one location.

Thus, the contributions of the dissertation are in three main areas:
1. the development of techniques to structure formal requirements specifications,
2. the addition of a module construct to RSML™¢, and

3. integration with existing work to form a methodology, called the Family Ori-

ented Requirements Method for Process Control Systems (FORMpcs).

Within these general areas, there are a number different dimensions of contribu-
tions as well as contributions at different depths. This is summarized in Figure 1.1.
The figure contains two dimensions: (1) the dimension from the most general (i.e.,
applicable to all software systems) to the most specific (i.e., applicable only to our
specific specification language and techniques) and (2) from the most fundamental to
the most detailed. Along these dimensions, we have three facets of contribution: (1)
product family structuring, (2) methodology work, and (3) RSML™° additions. Bub-
bles in the figure that have a grey background indicate an area where work has been
done. Bubbles with a bold (thicker) border indicate areas in which this dissertation
has made significant contributions. Bubbles with a white background and non-bold

border indicate areas that are future work.

Most Detaijad

Patterns of
Reuse

Most Fundemental

Support for
0O Concepts

Most General

Module

Property
Spacification

Product Family Contribution!

RSML~ Addition:

Figure 1.1: Framework of Contributions. Bubbles with a bold outline indicate areas
of contribution by this dissertation; bubbles with a grey background indicate areas

where significant research results have been achieved.

The first line of work is the product family facet. As shown in the figure, this
facet is the most general. Techniques that were developed for product families are
extensible to all software systems including the safety-critical systems of the most
interest to this work. Furthermore, the product family structuring techniques are
also based on the fundamental principles of product families and represent a basic
contribution to the field of product-line development. The next facet of contributions
has been the most explored by this work, and that is not surprisingly the methodology
dimension. The original contributions of the methodology are highlighted and the
methodology is available as a separate document [41]. The final facet of contribution

for this research is the addition of the module construct to RSML™°.

1.2 Organization

The rest of the dissertation is organized more or less around the contribution frame-
work described above with some introductory material where necessary. First, we
will present some background and related work that forms the foundation for much
of the dissertation work in Chapter 2. Next, Chapter 3 presents the three primary
examples for the dissertation work: the Altitude Switch (ASW), Flight Guidance
System (FGS), and Mobile Robotics (MR).

The product family work is the first that will be presented as it is the most
fundamental and allows us to give a very thorough overview of the high-level re-
quirements for the case studies (Chapter 4). In this chapter, we concentrate on the
structures that are present in the product family domain and do not delve deeply
into the process which is used in elicitation of the family requirements (much has
already been written on elicitation and management in the literature, for exam-
ple [117, 116, 5, 16, 18, 20, 53, 12, 21, 28, 96, 95, 112, 100, 50]).

Moving on, Chapter 5 then explains the fundamentals about the types of systems

of interest in this report— safety-critical process-control systems— and illustrates vari-
ous models for describing the entities involved. We relate how process control systems
can be thought of in terms of the product family structuring discussed in the pre-
vious chapter. And, we also discuss the low-level micro-process, specification-based
prototyping [109], on which the methodology is based.

The activities and processes of the methodology are presented in Chapter 6. In-
stead of reproducing the entire methodology, only an overview is given here (however,
the entire methodology is available as a technical report [41]). We do illustrate the
overall process and point out where original contributions were made in the develop-
ment of the methodology.

Chapter 6 also presents an overview of a number of formal and semi-formal lan-
guages to which the methodology is applicable. Highlighted in this chapter are the
reuse and modularization capabilities of the language as well as how suitable each
language is to working at the requirements level as opposed to design or implementa-
tion. This chapter also contains an introduction to RSML™°, the formal specification
language developed at the University of Minnesota that we will use in our examples.

The next chapter (Chapter 7) illustrates how a modularity construct can be added
to the RSML™° llanguage to improve its ability to be used in conjunction with the
methodology. These additions, make RSML™® one of the most suitable languages
in which to develop formal state-based requirements. The additions are primarily
centered around the addition of a reusable module-type construct to the language.

Finally, Chapter 8 presents our conclusions and future work that may be com-
pleted. The dissertation also includes a number of appendices. Appendix A includes
the definition of all the standard modules that are meant to be included with every
specification in the new version of RSML™°. Appendix B includes the completed

Altitude Switch (ASW) requirements specification, and Appendix C includes the

completed ASW software specification.

Chapter 2

Related Work

Much of the thinking behind the work that has been done in structuring programs and
software designs is also applicable to software requirements. Indeed, often a structure
is imposed at the requirements level in large software projects to make the require-
ments easier to comprehend. Nevertheless, structuring at the requirements phase is
fraught with its own, unique problems, e.g., the desire to avoid implementation bias
through the structure of the requirements. This chapter attempts to overview the
most relevant work related to requirements structuring. In addition, later chapters
add more related work that is specific to the topics at hand.

We will begin by examining early work in software system structuring that pro-
vides the basis for much of the object oriented work and component software work
that has followed. Next, we will examine product families (sets of related software ar-
tifacts) and the work that has been done there to facilitate reuse. Related to product
families is work that has been done on macro-structuring of software systems in the
software architecture community. Finally, we will wrap up the chapter by discussion
what previous attempts have been made at methodologies for formal requirements

and process-control systems.

10

2.1 Early Work

Much of the early work on structuring and design of software systems was written
by David Parnas et al. This seminal research lays the groundwork for many later
developments including object oriented analysis and design. Thus, it is good place
to begin to examine research about the structuring and modularization of process
control systems.

In [90] Parnas describes common manifestations of software which is not easily
extensible or contractable. First, he suggests that defining the subsets of the pro-
gram functionality belongs in the requirements phase. In particular, he describes
searching for the minimal subset and then building incrementally on this initial func-
tionality. Indeed, this approach is at the forefront of modern software design and
implementation. Second, Parnas describes information hiding and module definition.
Third, Parnas introduces the concept of thinking about software modules as “soft-
ware machine extensions that will be useful in writing many ... programs.” This
idea is fundamental to object oriented design and analysis was well as the even more
modern component-based technologies. Finally, Parnas describes avoiding loops in
the uses graph of the software modules. Avoiding uses loops produces a software
system which is much less interdependent, and therefore less complex. These ideas
are illustrated in the paper through an address processing system example.

Parnas et al. also addresses abstract interfaces in several other papers. In [13,92]
they describe the creation of abstract interfaces for the A7E aircraft specification [46].
This work discusses the importance of defining an abstract “virtual device,” which
could be a combination of software and hardware. This enables the developers to
isolate changes in the hardware from the rest of the system. The work also describes
a number of problems with using the methods, for example, virtual devices that are

likely to change or that do not correspond to hardware devices.

11

The ATE project resulted in the creation of the SCR (Software Cost Reduc-
tion) [45] language for expressing the required behavior of process-control systems
(discussed in more detail in the next section). During this time, the four-variable
model for process-control systems was developed and later publicized in [93] (more
on the four variable model and other reference models for process-control systems
will be presented later in this chapter).

Nevertheless, the work discussed above does not include sufficient guidance for
practitioners to be able to develop and structure formal models of process-control
systems. The work does not address reuse specifically and also does not address issues
specific to requirements, for example, how to avoid biasing or limiting the eventual
implementation of the software because of the structure chosen for the requirements.
More work is needed to further refine the basic ideas present in this foundational

work so that it is (1) complete and (2) accessible to practitioners.

2.2 Product Family Engineering

Reuse of in the software domain has been the most successful when reusing software
artifacts across members of a series of related products, i.e., a product family. In this
section, we give an overview of the most relevant work that has been done in the area
of product family engineering, starting out with background of the field, and moving

on to specific research results and results in the related field of software architecture.

2.2.1 Background

A software product-line is a family of related software products designed to take
advantage of their similarities and predicted variabilities. Domain engineering is the
process of studying families of similar software artifacts so as to make it easier to

build the individual members of the family. The concept of a program family was

12

originally developed by Parnas in [89] and later expanded in [90]. For the purposes
of this discussion, we will take the terms domain, product family, program family
and product line to be equivalent. Parnas gives a pragmatic definition of program

families:

We consider a set of programs to constitute a family whenever it is worth-
while to study the programs from the set by first studying the common

properties of the individual members. [89)

Parnas observed that often programmers would create new programs by modi-
fying existing programs. This process usually involved a reverse step where parts
of the working program were discarded. The new program was sometimes crippled
by design assumptions made for the original program that did not apply to the new
program. Thus, Parnas postulated that it would better to start out by defining what
was common about all such programs and successively refining the design until you
had working programs as the leaves of a tree structure, with nodes within the tree
representing the various design decisions.

The basic idea behind software product line engineering is shown in Figure 2.1.
The development process begins by studying the domain — the family of software
programs that is desired by the customer. The result of this analysis is some appli-
cation engineering support. Researchers differ in what exactly should be provided to
support the application engineering process, for example, in FAST (Family-oriented
Abstraction, Specification, and Translation) [117] the application support is typically
a domain specific language (DSL) and associated application generation facilities. In
other approaches, the product of domain engineering might be a reference architec-
ture that can be used to build each family member. After the domain engineering
artifacts have been created, they are then used in the application engineering process

to produce the individual family members.

Domain Engineering

Application Engineering
Support

Application Engineering

Figure 2.1: An overview of a domain engineering process

13

14

The cost benefit ratio of product-line engineering is clear and is illustrated in
Figure 2.2. Domain engineering has the effect of making the slope of the cost line less
because (presumably) the application engineering support (the product of domain
engineering) makes it less costly to build each family member. Thus, given the cost
savings to build each family member due to the application engineering support, the
team must build enough family members to make up the cost of the initial domain
engineering.

Of course, if product family engineering was as easy as it sounds from this simple
introduction it would not be the active area of research it is today. There are many
problems with establishing the requirements for and creating support for software
product lines that are currently being addressed by researchers. In the next section,
we will give an overview of various lines of foundational research in the product family

area.

2.2.2 Product Family Research Concentrations

In recent months, this area of research has gown dramatically as many that were
formally primarily concerned with software architecture have become more concerned
with product families. Therefore, a complete view of all research that is happening in
the field can not be presented here. Instead, we will focus on the foundational work
as well as work that deals specifically with the requirements for a product line, which

is the work most relevant to this dissertation.

FAST by David Weiss et al.: The work on FAST (Family-oriented Abstraction,
Specification, and Translation) [117, 4] produced the first significant results in the field
of product-line engineering. Based directly on Parnas’ work, FAST focuses on using

domain engineering to develop a domain specific language (DSL) and application

Cost A

Cost of Domain Engineering
A

Point at which product-line
engineering begins to
benefit the project

___ using product-line
engineering

... standard
development

Figure 2.2: Cost-benefit analysis of software product-line engineering

Y
of Family Members needed to
Pay for Domain Enginesering

15

—
Number of Family Members

16

generation facilities as the application engineering support (see Figure 2.1). The
FAST approach has been applied to over 25 domains including a floating weather
station [117], a commands and reports for the AT&T 5ESS telephone switch [19], and
auditing software for the 5ESS [33]. The FAST process is one of the most developed
of the product-line engineering approaches and is formally documented in [117].

The aspect of FAST most useful to the work presented in this dissertation is
commonality and variability analysis [117, 116, 18], which focuses on identifying the
aspects of the product family which are common across all members versus those
which vary from member to member. The FAST researchers identified what informa-
tion should be specified about commonalities and variabilities as well as the process
that should be used to discover them.

Commonalities and variabilities can be used as a basis for thinking about the
structure of the system, which is why they are of interest. Nevertheless, FAST (or any
other product-line engineering approach) does not say how to use the commonalities

and variabilities to help to structure the system.

Lam’s Work: Unlike the FAST work described above, the goal of Lam’s approach
to product-line engineering was not the explicit development of a product line but
rather a way to facilitate requirements reuse. In [59] Lam describes the RACE
(Reusable Architecture Creation and Employment) process for product-line engineer-
ing. In RACE, the result of domain engineering is a reusable architecture that is
adapted to work with each member of the product family. This work is based closely
on previous work that was done by Tracz on domain specific software architectures
(DSSA) [112, 113].

Lam’s work is based on experiences in specifying the requirements for aero-engine
control systems at Rolls-Smiths Engine Controls [58, 60, 61, 62]. The work is use-

ful because Lam approaches the problem from the standpoint of requirements reuse

17

rather than concentrating entirely on just the idea of the product-line. This makes
Lam’s work especially interesting for this dissertation, since one of the goals is to reuse
formal requirements for process-control systems. Nevertheless, Lam work is made up
of a collection of approaches, some overlapping, that worked in specific situations
related to the Rolls-Smiths Engines case-study. Lam does not generalize the work,
and therefore the simpler and more elegant formulation provided by Weiss et al. and

the FAST approach is a more solid foundation on which to build new techniques.

Lutz’ work: In the past several years, Robyn Lutz has started to do some work
on the safety analysis of product families [67, 68]. The basis of this work is Lutz’
extensive experience with projects at the Jet Propulsion Laboratory (JPL). She has
discovered a number of issues with current product-line engineering approaches that
are of immediate concern when looking at adapting the product-line approach to work

with the methodology that we are proposing. These issues are:

e Near commonalities. These are properties that are true for almost all the
systems in the domain. Lutz presents two approaches to the problem: (1)
model them as variabilities, or (2) model them as constrained commonalities.
Nevertheless, Lutz states that she expects that the question of how to deal with

near commonalities will be a recurring issue in product-line engineering.

¢ Dependencies among options. In this case, the problem is that among the

variabilities there are constrains as to which options can occur together.

e Hierarchy of variabilities. Lutz discusses organizing the variabilities hier-
archically such that all the family members at a certain node share the same
value for a set of parameters of variability. Ultimately, there are many different

trees that could be constructed in this fashion. It is an open issue whether or

18

not a hierarchy of variabilities would be beneficial and how to determine the

structuring of the hierarchy.

Lutz’ work is useful because it exposes issues encountered when applying the
product-line engineering approach to real systems. The solution to the three questions
above, for example, would contain essential information about the structuring of the
commonalities and variabilities and hence the structuring of the specification. Major

steps towards such a solution is exactly what is proposed in this dissertation.

Recent Developments: Software product-line engineering has the potential to
deliver great cost savings and productivity gains to organizations that provide families
of products, as well as give those organizations a competitive edge in the market-
place. For safety-critical systems, software-product line engineering has the potential
to produce systems that are more safe than their serially produced counterparts while
being cheaper and faster overall to build.

Although one of the main barriers to the use of product family techniques is one
of process and organizational acceptance, technical issues have not been completely
solved for product-line engineering. The techniques available work best for cohe-
sive product families, where the variabilities do not have complex interdependencies.
When this is not the case, it can be difficult to apply the product family approach
even though there might be significant commonalities between the members of the
family.

Current techniques for product-line engineering work well if the following condi-

tions are met:

e The systems in the family share significant commonalities, and

e The variabilities which define each family member have a straightforward deci-

sion model, i.e., it does not require many complicated rules to describe how the

19

variability values are assigned to produce each family member.

The first point describes the essential feature of product families that Parnas noticed
in his work. However, the second point originates in the practical experience of
many researchers who have labored to construct software product-lines. Recall that
Robyn Lutz observed that the primary limitations of the product family approach
stem from difficulties in handling “near-commonalities and relationships among the
variabilities” [emphasis added] [69]. Thus, the simplier the relationships among the
variabilities, the easier it is to construct the product family.

Recording the structure of the product family at the requirements level before an
architecture has been constructed may provide advantages in making an architecture
that is more flexible in the face of changes to the domain. Therefore, we feel that it is
important to develop a structuring technique for product families that is designed to
be used at the requirements level. This would allow the potential to develop analysis
techniques for the product family requirements and could provide insight into the
high-level structure of the architecture. This high-level structure can guide the later
creation of the architecture and is therefore complementary to current work in the
field.

Nevertheless, most of the current approaches to product family engineering focus
on developing the assets (i.e., reference architectures or generation facilities) using
the commonalities and variabilities as a requirements specification for the product
family. The issue of how to structure the architecture to overcome difficulties in
the family itself (such as near-commonalities) is often intermingled with solutions to
general architecture problems. In order to adequately address this large area of work,

we have have devoted the next section to that topic.

20

2.2.3 Software Architecture and Software Structuring

Software architecture research focuses on leveraging patterns of software design and
programming. Why then, discuss software architecture in the context of the require-
ments for product families? The reason is that much of the recent work that has been
done in product families has been done with only a cursory look at the requirements
problems for product families and with requirements issues intermixed with software
architecture, design and implementation details. Therefore, it is somewhat challeng-
ing to get a complete picture of the work on product-line requirements without taking
at least a small look at research in software architectures.

Much work in the software architecture community has focused on developing
formal languages suitable for describing the software architecture. These architecture
description languages (ADLs) include MetaH [115, 9, 114], Unicon [98], Darwin [72,
70, 71], Wright [2, 3, 86], Aesop [26, 25|, Weaves (29, 30|, C2 [76, 77}, SADL [85, 84],
ArTek [103], and Lilleanna [111] (among others).

Furthermore, as the research in software architectures have progressed, there
have been several efforts to provide a survey of and classification of ADLs includ-
ing Clements [17] and Medvidovic [79, 78]. These surveys have helped the research
community distinguish ADLs from requirements languages and programming lan-
guages as well as provide researchers and practitioners with a good idea of what
constitutes an architecture description language. An ADL is generally expected to
include a method of modeling both components and connectors between components
as well as providing some kind of type checking and configuration language (to sup-
port expressing variabilities of product family members).

Researchers are in agreement that an ADL is not a requirements language; yet,
most work on the structuring of product families focuses on the structuring of the

architecture and views the commonalities and variabilities as a flat structure when,

21

in fact, this is not the case. To compound this issue, much of the recent work in
product families has focused on building a complete solution for a particular family.
This has the positive effect that the work is applicable to real families of systems,
but it has the negative effect that it is often difficult to separate concerns with the
product family requirements from architectural or implementation concerns. This is
especially important for our work, where we wish to discuss a formal expression of
the requirements to do not wish to proceed directly to an object-oriented design and
implementation of the family.

Therefore, in the work presented in this dissertation (Chapter 4) we make a clear
distinction between the structure of the product family requirements versus the struc-

ture of the product family architecture.

2.2.4 Product Family Summary

Current work in product family engineering has been successful at achieving reuse in
limited domains. Many lines of research are helping push the current state-of-the-
art including new techniques for implementing product lines and expressing product
line architectures. In this dissertation, we will address techniques for recording and
reasoning about the structure of the product family requirements; a topic that is
inadequately addressed by current work in the field.

In addition, we will strive to make a distinction between the product family re-
quirements and the remainder of the product family development effort. This is
necessary so that we can integrate formal specifications of the family requirements
into the development effort In the next section, we discuss various system existing
models system for process-control systems and several methodologies that have been

proposed for specification construction.

22

2.3 Methodological Background

Some of the key related work for the methodology is the spiral model of software
development proposed by Boehm [10, 11}. This model advocates managing risk in
a software project by building and testing the project in smaller, more manageable
phases. This is contrasted with the waterfall model [97], that advocates the unrealistic
process of gathering and certifying all the requirements in the project up front and
then proceeding on through the design and implementation phases.

As Parnas and Clements have noted [91], it is impossible that the complete re-
quirements can be established in the beginning of a project because often the customer
does not know or cannot clearly articulate what it is they want, some details become
known only when the implementation or design progresses, and people will naturally
make human errors. Therefore, Parnas and Clements focus on “faking” the rational
design process; in other words, ordering the documentation for a system such that
it appears to have been constructed by an idealized process so that it is accessible
to the persons who need to review it, even though such a process was not followed.
Furthermore, Parnas and Clements go on to state what they perceive as the rational
design process that should be emulated by such documentation.

One of the main reason requirements change is because the customer often does
not understand what it is they need or want until they can see a working version
of the system. This is especially true of, for example, user interface systems. It
is also true for safety-critical process-control systems because it is often difficult to
visualize what the system will do in certain situations from a long list of natural
language requirements. Thus, a prototyping approach where an executable model
of the software is available early in the development life cycle is key to successful
development.

We wish to develop requirements for process-control systems. Therefore, we

23

i— Environment |tf————

Sensors Actuators

Bl
]

Operator

Figure 2.3: A basic process-control model

should first discuss the theory and general background of the process-control field be-

fore moving on to several different system models for thinking about process-control.

2.3.1 Introduction to Process-Control Systems

A system is a set of components working together to achieve some common purpose
or objective. A process-control system usually involves an environment (i.e., the
world), a program (or multiple programs) whose purpose it is to establish or maintain
certain conditions in the environment, sensors and actuators that allow the program
to get information about the environment and affect the environment, and finally
the operator who can usually input various parameters to the running program and
receive feedback from the running program. This is summarized in Figure 2.3.
Consider the environment of aircraft moving along in three dimensional space. In
this unconstrained environment, airplanes are free to have midair collisions, disrupt

take-off and landing of other aircraft, and so forth. Clearly, this is not desirable;

24

therefore, we need a process-control system for air traffic control that will allow us to
enforce certain restrictions in the environment, for example, that planes do not run
into one another. To do this, we will have to have some sensors, which will give us
data about the position of the aircraft in the system, some actuators which will allow
us to make course corrections for the aircraft in the system, and possibly have some
operator input to guide these choices.

There are a number of difficulties in constructing process-control systems. First,
the environment is a key element that is often under specified and/or misunderstood.
Misunderstandings about the environment in which the system operates have been
the cause of numerous accidents. Second, the sensors and actuators often provide an
imperfect, or noisy, view of the real world; sensors can introduce errors, and actuators
can fail. Therefore, the program may lose track of the true state of the environment
and error conditions in the sensors and actuators can be difficult (or impossible)
to detect. Finally, the controller often has only partial control over the process;
therefore, state changes can occur in the environment when no actuator commands
were given by the program.

Besides the basic objective or function implemented by the program, process-
control systems may also have constraints on their operating conditions. Constraints
may be regarded as boundaries that define the range of conditions within which the
system may operate. Another way of thinking about constraints is that they limit
the set of acceptable designs with which the objectives may be achieved.

These constraints may arise from several sources, including quality considerations,
physical limitations and equipment capacities (e.g., avoiding equipment overload in
order to reduce maintenance), process characteristics (e.g., limiting process variables
to minimize production of byproducts), and safety (i.e., avoiding hazardous states).

In some systems, the functional goal is to maintain safety, so safety is part of the

25

MON REQ > CoN
A
I————— Environment -
IN Sensors Actuators ouT
el Program ——-I
\j

INPUT SOFT - OUTPUT

Figure 2.4: The four-variable model.

overall objective as well as potentially part of the constraints.

This model is an abstraction—responsibility for implementing the control func-
tion may actually be distributed among several components including analog devices,
digital computers, and humans. The next sections discuss elaborations of this model

and what are considered system versus software requirements.

2.3.2 The Four Variable Model and CoRE

The four variable model was published by Parnas and Madey [93] and is the closest
to the traditional process-control model. The four variable model was developed from
early efforts to specify the requirements for the A-7 aircraft [46, 45] in a language
called Software Cost Reduction (SCR) [43, 42, 44], which was also developed on the
project.

An overview of the four-variable model is shown in Figure 2.4. For reference, the

26

process-control model has been reproduced in grey inside of the four variable model.
The four variable model consists of (not surprisingly) four sets of variables (MON,
CON, INPUT, and OUTPUT) and five relations between those variables (REQ, NAT,
IN, OUT, and SOFT).

All of the variables in the model are continuous functions of time. The MON,
or monitored, variables are those quantities in the environment of the system that
we can observe. An example of a monitored quantity in the hypothetical air traffic
control system mentioned previously might be the altitude of an aircraft. The CON,
or controlled, variables are those quantities in the environment that we can affect.
Thus, altitude is also a controlled quantity in our example.

The relationships between the MON and CON quantities are essential to under-
standing the behavior of the system. The NAT relation expresses the environment
of the process-control system. Thus, the NAT relation expresses how changing the
controlled quantities affects the monitored quantities (CON to MON) as well as con-
straints that exist on any required behavior and behaviors that already exist in the
environment (MON to CON). The REQ relation represents the functions and oper-
ations that we desire to introduce into the environment, and is therefore a relation
from MON to CON.

Monitored and controlled quantities do not correspond to inputs from sensors or
outputs to actuators, they are an idealized representation where we always know their
values to infinite accuracy. Because of problems introduced by noisy and inaccurate
sensors as well as inaccurate or unreliable actuators, the relationship of the monitored
and controlled quantities to the software inputs and outputs is often non-trivial. The
four variable model represents the software inputs and outputs as INPUT and OUT-
PUT respectively and the transformation of monitored quantities to input quantities

as the IN relation (similarly for the OUT relation). Given REQ, IN, and OUT a spec-

27

ification of SOFT, the software requirements, is theoretically achievable. However,
the four variable model leaves open how this specification should be constructed, and
how it should be structured.

The four variable model has served as the foundation for several research efforts.
Most notably, the work at the Naval Research Laboratory (NRL) on the SCR notation
and our work on specification-based prototyping [109] (which is discussed further in
Chapter 5).

To augment the four variable model and support the SCR language, the CoRE
(Consortium Requirements Engineering) [99] methodology was produced by the Soft-
ware Productivity Consortium (SPC). Many talented people contributed to the de-
velopment of CoRE and it contains many valuable ideas for the development of
process-control systems. In particular, The CoRE guidebook [99] provides techni-
cal information on how to document the environmental variables and how they fit
into the four-variable model, and they provide some guidance on which environmental
quantities are suitable candidates as monitored and controlled variables.

The CoRE process begins with the system requirements and ends with a software
requirements specification. The overall CoRE process is divided up into five main

phases:

1. Identify Environmental Variables: In this phase, the specifiers identify
environmental quantities that the software can monitor and control. Environ-
mental constraints, i.e. constraints which would exist without the presence of
the system, are defined; this is called the NAT relation. Finally, the structure

of the system is represented as an entity-relationship (ER) diagram.

2. Preliminary Behavior Specification: In this phase, a first draft of the high-
level behavioral specification, the REQ relation, is developed. The decision is

made as to which environmental quantities are monitored, controlled, or both.

28

The domains of the controlled functions are defined and the monitored variables
which effect the value of the controlled variable are recorded. Finally, the

number and type of mode machines needed is decided.

3. Class Structuring: In this phase, the structure of the system is decided. The
CoRE methodology attempts to support a pseudo-object oriented structuring
technique which includes specialization and generalization. The primary struc-
turing guidance is to choose the objects based on the physical structure of the

system and as an extension to the ER diagram developed in the first phase.

4. Detailed Behavior Specification: This phase culminates in the completion
of the behavioral specification of the classes identified in the previous phase.
The controlled variable functions are completely defined and the other classes
are refined. Timing constraints, in terms of when each mode machine is recom-

puted, are also addressed.

5. Define Hardware Interface: In this phase, the characteristics of the sensors

and actuators are defined by defining the IN and OUT relations.

In practice, the developer must iterate between these phases of the CoRE method-
ology rather than proceeding through them in a waterfall-like fashion. The CoRE
manual addresses this iterative nature in and provides an overview of both the ideal
and the interactive (realistic) development process. This enables CoRE to provide
both guidelines on what should be contained in the specification as well as how the
specification should be developed. CoRE further addresses the how question by pro-
viding entry and exit criteria for each of the key steps in the model.

CoRE includes many good ideas and suggestions for developers. The guidelines on
identifying the monitored and controlled variables for the system are useful in focusing

the construction of the REQ relation. Also valuable is the process of developing a

29

dependency tree for the monitored and controlled variables early in the specification
life cycle. This helps to clarify thinking and avoids circular dependencies, which are
not permitted in SCR and not recommended by Parnas [90]. Finally, the overall
process is good and provides important guidance to specification developers on how
to proceed with the development effort and what information should be included
at the various stages. These guidelines provide some help, but in our experience
more guidance is needed to correctly make the crucially important selection and
classification of the environmental variables.

Nevertheless, the CoRE methodology falls short in a number of areas. First, as-
suming we have captured the relations REQ, NAT, IN, and OUT, we need to derive
the SOFT relation. There is little guidance in the CoRE guidebook as well as in
the original four variable model work on how to achieve this task. Second, the only
structuring guidelines are based on the physical structure of the system. Such a
structure will not work in general and does not facilitate reuse of operational modes.
Since multiple structuring techniques are not presented, there are also no tradeoffs
between them. Third, the latter phases of the methodology are unclear and, in some
cases, self-contradictory. In particular, the “Define Hardware Interface” step is a mere
twelve pages long and includes nothing on the structuring or refinement of the IN
and OUT relations. Furthermore, their seems to be some confusion about the differ-
ence between monitored/controlled variables and input/output variables throughout
CoRE. Finally, CoRE does not specifically address reuse (other than saying the reuse
is possible using the class structuring). It does not include information on how to

plan for reuse or structure for reuse.

30

Environment System

(G

O visibility O control

Figure 2.5: The world, requirements, specification, program, and machine (WRSPM)
model [32].

2.3.3 The WRSPM Model and REVEAL

Michael Jackson and Pamela Zave have presented a reference model for requirements
specifications—the world-machine model [48, 50, 51, 120]. The discussion in this
section is based on the formalization of this model provided by Gunter et al. [32].
The main idea behind the world-machine model is a separation of concerns be-
tween the world (or the environment) and the machine (or, the system to be built).
Jackson et al. state that the requirements and problems exist in the world, because
it is the world that we wish to change via the introduction of the machine. Thus
the WRSPM is based on five artifacts grouped roughly into two categories—the ones

relating mostly to the environment (or world) and those that pertain mostly to the

31

computer and software (or the machine). These artifacts are denoted by W, R, S, P,

and M as illustrated in Figure 2.5. The artifacts are:

The World (W): This is domain knowledge that captures knowledge of environ-

mental facts.

The Requirements (R): Describes what the customer need from the system ex-

pressed in terms of its effect on the environment.

The Specification (S): A less abstract description of the desired behavior that
provides enough information for a software developer to design and implement

a system that satisfies the requirements.

The Program (P): The program (implemented in some programming language)

that implements the specification and runs on some machine.

The Machine (M): The system (computer, associated hardware, operating system,

etc.) that executes the program.

Variables that belong in the world are collectively called e—the ones belonging
in the machine are called s. The variables in the world e are split into two mutually
exclusive sets e, and e,—the variables in e, are hidden from the system and are
considered to be exclusively in the domain of the environment. The variables in e, are
visible to both the environment and the system. The variables in s are decomposed in
a similar way into s, and s, where all variables in s, are hidden from the environment.

With this decomposition of the variables, ey, e,, and s,are visible to the environ-
ment and used in W and R. Variables in e, s,, and s, are visible to the system and
used in P and M. The only variables shared between the environment and the system

are in e, and s,—therefore, the specification S is restricted to use only variables in

32

e,and s, and they form the interface between the environment and the system. Fig-
ure 2.5 (from [32]) illustrates the relationship between the variables and the various
artifacts.

The WRSPM is related to the four-variable model discussed in the previous sec-
tion. W corresponds to NAT in the four-variable model. R corresponds to REQ. In
the four variable model, REQ and NAT are somewhat more restrictive than W and
R in that it can seemingly only make assertions about the variables that are shared
between the environment and the system. W and R allow us to make statements
about variables that are hidden from the system (e;). SOFT corresponds to P, and
IN and OUT together correspond to M.

The real difference between these two models is in the consistency and sufficiency
constraints imposed on these various relations. We will not consider these technical
details further in this guide—the interested reader is referred to [32] for a detailed
discussion.

The WRSPM model is intended as a reference model only and does not discuss
how the various variables in e and s are selected. Nor does the method discuss how
the various artifacts are derived or structured—this is a pure reference that simply
discusses the required relationship between these different artifacts.

The REVEAL methodology [94] was developed by Praxis Critical Systems, Lim-

ited as a method based on the world-machine model. REVEAL consists of six stages:

1. Defining the Problem Context: In this stage the goal is to develop an
understanding of the problem (i.e., what it is about the world that you wish

the system to help to achieve) and explore the boundaries of the problem.

2. Identifying Stake holders and Eliciting Requirements: This second stage
is associated with identifying stake holders to the project and eliciting require-

ments and domain knowledge.

33

3. Analyzing and Writing: In the third stage, the requirements and domain
knowledge are written down and analyzed using the completeness criteria of the

WRSPM model.

4. Verification and Validation: The fourth stage involves checking the work

that was done in the first three stages to ensure its accuracy.

5. Use: After the fourth stage, the requirements will be used throughout the rest

of the development life cycle.

6. Maintenance: Should any changes to the requirements be discovered, then
we must perform maintenance on the description. This is discussed in the final

stage of REVEAL.

The REVEAL methodology is based on two key processes: (1) conflict manage-
ment, and (2) managing requirements. The work in REVEAL on managing require-
ments is the most relevant to this work.

REVEAL implements a unique notion of traceability of the requirements based
on the WRSPM model. In the WRSPM model the requirements are satisfied when
the World (W), and the Specification (S) imply the requirements. That is,

W,SFR

This concept is referred to as the Adequacy Check by the REVEAL method. REVEAL
uses the adequacy check as a basis for the entire requirements process.

Suppose, for example, that we start out writing down the general requirements
for a system that we are building. We would record these requirements, Rgen, along
with a description of the World, W, and specification, S. Then, we demonstrate that
W, S F Rgen and life is good.

34

Now we want to introduce more detail to R, and produce a set of requirements at
a lower level of abstraction. Of course, the detailed requirements, Ry, are certainly
related to Ry, and certainly that relationship should be preserved in the requirements

documentation. Thus in REVEAL, we would prove the property:

W) Rdet H Rgen

then, by transitivity, we can reuse the original adequacy check on the general require-
ments so show that the requirements are still satisfied. Doing this provides traceability
to the high-level requirements from the detailed requirements and ensures that if the
high-level requirements change, the proofs for the detailed requirements will no longer
work (as you would expect). This notion of traceability is similar to that proposed
by Leveson [27, 64] for Intent Specifications except that in REVEAL the traceability
is organized around a more formal framework.

The traceability information recorded by the REVEAL methodology combined
with its use of the WRSPM system model make REVEAL a good complement to
the CoRE methodology that we discussed earlier. However, a combination of RE-
VEAL and CoRE would still not serve the needs of practitioners because neither
methodology adequately addresses the issues associated with recording the require-
ments for product families. Furthermore, REVEAL does not address specifically the
issues associated with state-based specification of process-control systems in a formal

language (as CoRE does).

2.4 Summary

To summarize, currently, there is no focused, up-to-date methodology for developing
formal specifications for families of process-control systems. Many useful specifica-

tion languages exist, and there has been much convergence recently on the types of

35

languages and language features which are needed to express these types of systems.
Nevertheless, the most recent and complete methodologies available are the CoRE
methodology written a number of years ago for SCR-style specifications and the RE-
VEAL methodology based on the WRSPM model. The CoRE methodology must be
updated to reflect what has been learned about specification construction since its
development (some of which is included in REVEAL) and the REVEAL methodology
does not contain guidance on problems specific to constructing a formal specification
of the requirements.

Both CoRE and REVEAL lack guidance on how to structure and express the
requirements for a whole family of process-control systems and how to achieve reuse
of the specifications. We reviewed product-line engineering, an approach to software
reuse that leverages the similarities between members of a product family to achieve
cost savings and reuse. Unfortunately, much work in product family engineering is
oriented towards the design and implementation of the family rather than at record-
ing and structuring the product families requirements, which are largely composed of
the commonalities and variabilities of the product family. Nevertheless, issues with
product-line engineering that Lutz has raised are key to discovering how to structure
the commonalities and variabilities and thus the requirements. Structuring specifi-
cations, particularly with the goal of reusing operational modes or creating formal
requirements for a product family, is also currently not adequately addressed in the

literature.

Chapter 3

Case Studies

This chapter introduces the three primary running examples of the dissertation: the
Altitude Switch (ASW), the Flight Guidance System (FGS), and Mobile Robots
(MR). All of these examples represent families of process-control systems. The
techniques in the dissertation were also applied to a family of implantible cardio-
defibrillators at Medtronic during the summer of 2001; however, because this infor-
mation is Medtronic proprietary, details about the family and the specifications of it

cannot be included in this dissertation. We also provide an introduction to RSML™°.

3.1 Altitude Switch (ASW)

The first example that we will consider is the Altitude Switch (ASW), which is derived
from the ASW example proposed by Steve Miller from the Rockwell-Collins Advanced
Technology Center [82]. While our example is based on an original system, it is
hypothetical in that we have introduced certain features for demonstration purposes
and we may not represent the full spectrum of possibilities in this one example.

In avionics, the altitude of the aircraft is an essential environmental quantity.
Many devices on board the plane react to changes in the altitude, for example, the
autopilot must know the plane’s current altitude in order to know whether to climb
or descend. In addition, there are many other devices on board the plane which rely

on altitude. However, these different devices vary greatly in the types of actions that

36

37

the perform in response to the altitude data. In addition, the types of altitude data
differ significantly from system to system and from aircraft to aircraft. We will use
the ASW is the primary running example for the dissertation.

We might make an initial attempt at a family description such as the following:

The ASW family consists of systems on board the aircraft that utilize
the values from the various altimeters on board to make a choice among
various options for actions (one of which being to do nothing) and perform

the chosen action.

The ASW family could be viewed as a sub-family of a larger family which would
include all aspects of avionics systems. This description does describe all the systems
on board the plane which use the altitude and is therefore a good starting point for
describing our family. However, notice that the particular actions that the system
performs can be largely separated from tasks relating to measuring the altitude and
fusing the results from various different types of altimeters. We will refine this further
in Chapter 4 where we talk about the high-level commonalities and variabilities for
the ASW family.

Clearly, the ASW system must have a method of measuring the altitude. In
avionics, there are various types of altimeters that can be used to measure altitude, for
example, barometric altimeters (that measure altitude by measuring the air pressure),
radio altimeters (that use radio signals to measure altitude), and GPS altitude (that
uses the global positioning system (GPS) satellites to measure altitude). As the
aircraft moves from an area of high air pressure to an area of low air pressure the
barometric altitude will change even if the aircraft remains at the same absolute
distance from sea level. Therefore, the values given by these different altimeter types

are not necessarily comparable to one another directly.

38

In addition, in the avionics domain there are two types of altimeters: analog
and digital. The type of analog altimeters are designed to be used in thresholding
applications. Rather than provide a numeric altitude, these analog altimeters are
hard-wired at the factory to report whether the aircraft is above or below a certain
threshold. This is done primarily for cost concerns. Digital altimeters, on the other
hand, do provide a numeric altitude. All altimeters that we will consider provide an
indication of the quality of the altitude measured (i.e., whether the measured altitude
is good or bad). The number and type of altimeters on each plane is specific to each
family member.

The particular action(s) that the ASW can take as a result of crossing a threshold
vary across family members; however, in many ways the action to be performed is
orthogonal with decision to perform the action. For the purposes of this dissertation,
we will primary concentrate on a sub-family of the ASW family where and ASW
turns on or off a particular Device of Interest (DOI). We will however, explore the
various methods that the ASW might use to make the decision to perform the action.

Because the ASW is the primary running example for the dissertation, it is used in
almost every chapter. Chapter 4 gives a more complete overview of the ASW family
by providing the initial commonalities and variabilities, explaining and exploring the
family structure, and giving the decision model for the ASW family. A high-level
overview of the ASW specification effort is provided in Chapter 5 followed by a more
detailed look at some parts of the specification in Chapter 6. The ways that modules

facilitate reuse is examined in Chapter 7.

3.2 Mobile Robotics (MR)

The mobile robotics domain is the second case study for the dissertation. Although it

will not be discussed under every topic, as is the ASW, we will use it to illustrate the

39

product family structuring techniques in Chapter 4 as well as some of the high-level
process issues in Chapter 5.

The domain of mobile robotics that we will consider encompasses small robots
ranging in size from approximately 6 inches long to up to about 2 feet long. The
robots have a limited speed, and can operate either autonomously (via a radio modem
or radio Ethernet) or via a tether cable going to a personal computer. The robotics
platforms come from various vendors and have a wide variety of sensors and actuators
available. Also, the robots can support many different behaviors — scouting an area,
constructing a map, working collectively, and so forth.

We model the mobile robotics domain as a product family taking into considera-
tion both the different hardware platforms that could be supported and the many dif-
ferent behaviors we wished to specify. This proved to be difficult using conventional
product-family techniques because the mobile robot family is both n-dimensional
and hierarchical [22] (n-dimensional and hierarchical product families are discussed
in Chapter 4).

The mobile robotics domain breaks down along two clear dimensions: the hard-
ware platform and the desired behavior. Each hardware platform conforms to a basic
specification: it can move forward and backward, turn left and right, sense whether
or not an object is in front of it, and so forth. In addition, the hardware platform
may or may not be equipped with some sort of vision system or infra-red camera; the
various sensors used to monitor the environment differ greatly in the speed and accu-
racy with which they provide information. On the behavior side, we can imagine that
a basic behavior might be a random exploration of the robot’s environment where
the primary goal of the robot is collision avoidance and recovery. Furthermore, more
complex behaviors can be added, for example, wall following, going through doors,

and finding particular ‘objects. Therefore, along both the hardware and behavior

40

Figure 3.1: Pictures of the Mobile Robots (Photo by Timothy F. Yoon)

dimensions, the mobile robot family can be viewed hierarchically.

A family member in the mobile robotics domain will be defined by a pairing of the
desired behavior with the robotic platform. Of course, there are constraints between
the two dimensions and not all behaviors can run on all hardware platforms. For
example, a behavior that requires the robot to find all red objects in a room will
not work unless the robot has a sensor capable of distinguishing red objects from
non-red objects. These complications of the mobile robotics domain will be discussed
in Chapter 4.

As a specific example for this dissertation, we will consider a mobile robotics
domain consisting of three classes each of robots and behaviors. Figure 3.1 shows a
photograph of two of the mobile robots used as an example. Will will consider the

following robotics platforms:

e A custom robot made out of Lego pieces with two infra-red sensors in the front

41

for obstacle detection, a front bumper, and tank-tread locomotion. We will call

this one LegoBot,

o A Pioneer robot made by ActivMedia [1] which has an array of sonar sensors,
a gripper, collision detection via motor stalled, and wheels for locomotion. We

will call this one Pioneer,

e A Pioneer (see above) with a color vision system. We will call this one Pioneer
w/ Vision,
e A small “pickle” robot that can roll around, and jump over small obstacles, and

that is equipped with a camera. We will call this one Pickle,

The Pioneer Platform [1], is built and sold by ActivMedia, Inc (background of
Figure 3.1). The Pioneer includes an array of sonar sensors in the front and sides that
allow it to detect obstacles. To detect collisions, the Pioneer monitors its wheels and
signals a collision when the wheels stall. The Pioneer is supported by a comprehensive
software library (called Saphira) that manages the communication with the robot over
radio modem.

The lego-bot is a smaller platform built from Lego building blocks and small
motors and sensors. The lego-bot uses a tank-like track locomotion system and has
infrared sensors for range detection. The lego-bot is controlled via a tether to the
robot from the personal computer. This tether is connected to a data-acquisition
card and the software specification for the lego-bot behavior must directly manage
the low-level voltages and signal necessary to control the robot; there is very little
support for the actuators and sensors.

Although this is a significant simplification of the actual domain, it will be suf-
ficient to illustrate the various concepts in the dissertation. Clearly, the real mobile

robotics domain is significantly more complex than space allows us to present in

42

this dissertation. For example, we have not discussed whether or not the robot can
move objects in its environment (with a gripper, for example). Nevertheless, we can

illustrate some interesting properties of the domain even with this limited example.

3.3 Flight Guidance System (FGS)

The Flight Guidance System (FGS) example is loosely based on some of the FGS
systems built by Rockwell-Collins, but does not represent actual products of the
company. This FGS example is essentially the same one that has been introduced in
numerous other publications, including [81, 23|.

The purpose of the FGS is to compare the measured state of the aircraft to the
desired state of the aircraft and then generate pitch and roll commands that attempt
to maintain the measured state as close as possible to the desired state. The FGS
can be partitioned into two pieces: (1) the continuous control laws that govern the
performance of the various control surfaces of the aircraft, and (2) the complicated
mode logic that defines how the FGS switches between these control laws.

To perform its job, the FGS must communicate with other systems on board the
aircraft as well as other components of the Flight Control System (FCS), of which it is
a part. The level zero context diagram for the FGS is shown in Figure 3.2. The FGS
accepts input from the Primary Flight Display (PFD), Flight Control Panel (FCP),
Flight Management System (FMS), Autopilot, Attitude Heading Reference System
(AHRS), and NAV radio. These systems provide the FGS with the information it
needs to compute which mode is active. The FGS in turn provides output to the
PFD, FMS, FCP, and Autopilot.

The aircraft operators (i.e., the crew) primarily interact with the FGS through
the use of the Flight Control Panel. This panel includes a number of buttons for
manually selecting and deselecting modes of the FGS; the buttons have lights by

Control Surfaces

i

Autopilot

Primay Flight
Display (PFD)

Attitude Heading
Reference
System (AHRS)

Flight
Guidance

System

Flight
Management
System (FMS)

NAV Radio

Flight Control
Panel (FCP)

T

Yokes

Throttles

Figure 3.2: The FGS Level 0 context diagram

43

44

them that are lit with the mode is active. In addition, the FCP has several knobs
with the pilot can use to adjust settings that have wider range of values, such as the
selected altitude. The modes of the FGS are also annunciated on the primary flight
display using short text strings.

To make matters more complicated, there are actually two FGS systems on the
aircraft. This redundancy is present for safety reasons so that if one FGS should fail,
the other F'GS can be used to fly the aircraft. Nevertheless it should be clear to even
the casual observer that only one FGS should be allowed to control the aircraft most
if not all of the time; otherwise, the two systems would potentially fight over control.
Therefore, the FGS systems need to be synchronized a good deal of the time. In
addition to two FGS systems, there are also two FMS, AHRS, Air Data, PDF, and
NAV radio systems. Usually, the two sets of systems are referred to using left and
right (e.g., FGS-left, FGS-right).

The control of the aircraft is divided into the lateral and vertical components.
Thus, at all times the FGS is required to select one and only one lateral mode to
control the horizontal axis of the aircraft and, similarly, one and only one vertical
mode to control the vertical axis of flight. One mode in each axis is designated at
the default mode, meaning that if no other modes on that axis are active then it will

become active.

3.4 Introduction to RSML ¢

The majority of the work for the dissertation is independent of the particular choice of
formal modeling languages. Nevertheless, to present the examples for the dissertation
we have chosen to use the formal modeling language RSML™® (Requirements State
Machine Language, without Events). In this section, we will provide an overview of

RSML ¢ for those readers who would like a complete understanding of RSML™° prior

45

to seeing any examples. In practice, most readers could probably skip this section
until Chapter 7 when a detailed proposal for changes to RSML™° is presented.

The first version of RSML ™%, RSML, was developed as a requirements specification
language for process-control systems and is based on David Harel’s Statecharts [36].
One of the main design goals of RSML was readability and understandability by
non-computer professionals such as end-users, engineers in the application domain,
managers, and representatives from regulatory agencies [66].

Initial projects with RSML were a success and the language was well-liked by
users, engineers, and computer scientists. The explicit event propagation mecha-
nism (as mentioned above), however, was a major source of errors and misconcep-
tions [65]. Therefore, the events were eliminated from RSML The resulting language,
RSML™¢, has a fully formal semantics [118] and interfaces for the specification of
inter-component communication [40]. RSML™¢ is a cousin to SpecTRM-RL described
in [65] in that they share the formal semantics but the syntax is substantially different.

RSML™° is state-based specification language. An RSML™° specification consists
of a collection of input variables, state variables, input interfaces, output interfaces,
functions, macros, and constants, which will be discussed below.

In RSML™°, the state of the model is the set of assignment histories of all variables
and interfaces. The state information is used to compute the values of a set of state
variables, similar to mode classes in SCR [43]. These state variables can be organized
in parallel or hierarchically to describe the current state of the system. Parallel state
variables are used to represent the inherently parallel or concurrent concepts in the
system being modeled. Hierarchical relationships allow child state variables to present
an elaboration of a particular parent state value. Hierarchical state variables allow
a specification designer to work at multiple levels of abstraction, and make models

simpler to understand.

46

Assignment relations in RSML ™ determine the value of state variables. As dis-
cussed in Chapter 6, these relations can be organized as transitions or condition tables.
Condition tables describe under what condition a state variables assumes each of its
possible values. Transitions describe the condition under which a state variable is to
change value. A transition consists of a source value, a destination value, and a guard-
ing condition. A transition is taken (causing a state variable to change value) when
(1) the state variable value is equal to the source value, and (2) the guarding con-
dition evaluates to true. The two relation types are logically equivalent; mechanized
procedures exist to ensure that both functions are complete and consistent [39].

The state variable definition and assignment relation for a state variable in the
mobile robotics specification are given in Figure 3.3. The assignment relation is given
as a series of transitions from one value of the state variable to another. For example,
the first transition is from Startup to Cruise_Forward. On each transition, a condition
defines when that transition is taken. These conditions are simply predicate logic
statements over the various states and variables in the specification. The conditions
are expressed in disjunctive normal form using a notation called AND/OR tables [66].
The far-left column of the AND/OR table lists the logical phrases. Each of the other
columns is a conjunction of those phrases and contains the logical values of the
expressions. If one of the columns is true, then the table evaluates to true. A column
evaluates to true if all of its elements match the truth values of the associated columns.
An asterisk denotes “don’t care.” Although none of the tables given in Figure 3.3
have multiple columns, there will be examples of multiple column tables later in the
dissertation.

Input variables in the specification allow the analyst to record the the values
reported by the environment or various external sensors. They are assigned based on

the messages received by input interfaces (discussed briefly below).

Normal

Location: Reactive_Control

Transition: Startup—» Cruise_Forward

Condition:

TIME>2s

..Failure IN_STATE Ok

Transition: Cruise_Forward —® Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE

..Failure IN_STATE Ok

Transition: Cruise_Forward — Avoid_Obstacle

Condition:

ObstacleDetectedMacro() = TRUE

CollisionDetectedMacro() = FALSE

..Failure IN_STATE Ok

Tramsition; Collision_Recover —»Cruisc_Forward

Conditdon:

Prev_Step(..Robot_Recover_Action IN_STATE Donc)

..Failure IN_STATE Ok

Transition: Avoid_Obstacle — Cruise_Forward

Condltion:

Prev_Step(..Robot_Avoid_Action IN_STATE Done)

..Failure IN_STATE Ok

Transitlon: Avoid_Obstacle — Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE

..Failure IN_STATE Ok

Figure 3.3: The definition of the Normal state variable

47

48

Interfaces encapsulate the boundaries between the RSML™° model and the exter-
nal world. There should be a clear distinction between the inputs to a component,
the outputs from a component, and the internal state of the component. Every data
item entering and leaving a component is defined by the input and output variables
(state variables designated as outputs). The state machine can use both input and
output variables when defining the transitions between the states in the state ma-
chine. However, the input variables represent direct input to the component and
can only be set when receiving the information from the environment. The output
variables are presented to the environment through output interfaces.

The state variables are placed into a partial order based on data dependencies and
the hierarchical structure of the state machine. State variables are data-dependent
on any other specification entities that contained in the predicates in their condition
tables. A variable is also data dependent on its parent variable (if it has one). The
value of the state variable can be computed after the items on which it is data-
dependent have been computed. A single computation of all the variables in the
specification is referred to as a step.

RSML™®supports numerous expressions that allow for the specifier to express
the conditions (that define the data dependencies). Of course, RSML™¢ allows for
standard arithmetic and relational expressions, as indicated in Figure 3.4. Also in
the figure, RSML™° allows the specifier to reference the expected minimum, etc. that
was given in the specification.

RSML™ supports a number of different expressions on the variables of the spec-
ification as well. Input variables in RSML™® are assigned only by the interfaces;
therefore, there may be steps in which the input variable is not assigned. State vari-
ables, however, are assigned a value in every step. Figure 3.5 gives the expressions

that are currently available for state variables and input variables. As the figure

49

Expression

Meaning

£ ®y where © is one of +, —,

*, +1 <’ >, S? Z? #
NOT z

—T

T EQ_ONE_OF {yl, Yo, ...

z::EXPECTED_MIN
z::EXPECTED_MAX
1:MIN_SEP

i:MAX_SEP

yYUn}

Standard mathematical and relational expressions.

Standard logical NOT

Unary Minus

True if z is equal to any one of yq, y2, thru y, ex-
pressions.

Returns the expected minimum of variable z.
Returns the expected maximum of variable z.
Returns the expected minimum separation for in-
terface i.

Returns the expected maximum separation for in-

terface i.

Figure 3.4: A summary of the standard mathematical and relational expressions

supported in RSML™°

a0

shows, currently RSML™* includes facilities for getting the previous assignment, pre-
vious value, and value in the previous step for input variables and state variables.
These expressions are powerful, but in our work we have found them more limited
than what we would like. These expressions are one of the languages features that
will be changed in the new version of RSML ™ proposed in this chapter.

RSML™ currently supports a limited form of arrays and the expressions in Fig-
ure 3.6 give the syntax for these expressions. The reader can see that currently it
is possible to express the concepts of “for all,” “exists,” and others in the language.
Again, this facility, while powerful, does not allow us to add features without extend-
ing RSML™¢. This is a topic which is addressed in the next several sections of this
chapter.

Finally, to further increase the readability of the specification, RSML™¢ contains
many other syntactic conventions. For example, RSML™° allows expressions used in
the predicates to be defined as functions, and familiar and frequently used conditions
to be defined as macros. Functions in RSML™° are mathematical functions that are
used to abstract complex calculations. A macro is simply a named AND/OR table
that is used for frequently repeated conditions and is defined in a separate section of

the document.

3.5 Summary

This short chapter has presented an introduction to the case studies and notation
that will be used as the primary running examples for the rest of the dissertation. In
the following chapters, we will introduce more details about these examples as they
are used to illustrate the concepts in the dissertation.

The ASW will serve as the main example, being used in nearly every chapter.

The Mobile Robotics example will be used primarily to illustrate the product family

51

Expression

Meaning

ASSIGNED(z)
CHANGED(z)
WHEN(x)

PREV_STEP(z)

PREV_VALUE(z, [y])

PREV_ASSIGN(z, [y])

TIME_.CHANGED(z, [y])

TIME_ASSIGNED(z, [y])

True if variable was assigned in this step. Valid
for input variables.

True if variable z has changed value in this step.
True if variable z has become TRUE in this step.
Returns the value that variable = had in the previ-
ous step.

Returns the value that variable z had before it took
on its current value. y allows for any number of val-
ues in the past. Primarily used with State variables
Returns the value the variable z had before it
was assigned. Primarily used for Input vari-
ables; for state variables, (PREV_STEP)(z) =
PREV_ASSIGN(z).

Returns the time that variable z changed value.
Primarily for State variables.

Returns the time that variable z was assigned. Pri-

marily for Input variables.

Figure 3.5: A summary of the previous value expressions supported in RSML™°

52

Expression Meaning

EXISTS(i, z, c) True if there exists an 7 such that c¢ is true for the
variable z.

FORALL(Z, z, ¢) True if for all 7 ¢ is true for variable z.

COUNT(s, «,) Equals the number of conditions ¢ that were true

for variable z.

FIRST_INDEX(:, z, ¢) Equals the value of the first index 7 for which
c is true for variable z. Similarly, there is a

LAST_INDEX.

Figure 3.6: The array expressions currently supported in RSML™¢

concepts presented in the next chapter. Finally, the FGS is given as an example of a

large, industrial-sized example on which these techniques were applied and validated.

Chapter 4
Product Family Structuring

This chapter discusses the foundational work the has been done in product family
structuring in the dissertation. This work was originally published in [106] and a more
expanded version is currently under review for a special edition of the Requirements
Engineering Journal [107].

Recall that a product family is a group of related programs that share so many
common features that it is useful to study the group of programs as a whole before
studying each individual program. Current approaches were discussed in Chapter 2.
In this chapter, we propose a structuring technique for product families that views
the families themselves in a multi-dimensional and hierarchical fashion. This helps us
to deal with existing problems, for example, near commonalities, and also, helps to
extend the approach to domains that, traditionally, would be difficult for product-line
engineering.

This chapter is organized as follows. First, we will present some background both
from other researcher’s case examples and our own that indicate that product families
should be thought of in an n-dimensional and hierarchical way as well as what we
mean by those terms. Next, we present the structuring technique that allows the
product family to be organized n-dimensionally and hierarchically. Then, we devote
three sections to explaining how this technique is illustrated on each of the case

studies in the dissertation. Finally, we present a brief evaluation of the technique.

53

54

4.1 Extending Product Families

We have mentioned in Chapter 2 that current approaches to product family engineer-
ing work well when the family contains a cohesive set of commonalities and simple
relationships among the variabilities. We hypothesize that it should be possible to
model and reason able product families with much more complex variability relation-
ships than is currently possible today. We believe that to make this possible, we
must first better understand the structures that are present in product families. This
section gives the background for the structures that we have observed (and have been

observed by others), namely n-dimensional and hierarchical product families.

4.1.1 n-Dimensional Product Families

A three dimensional object has many different projections into two dimensional space.
Furthermore, it can be difficult (or impossible) to determine the shape of the three
dimensional object from the projections into two dimensional space unless the pro-
jections are carefully chosen. When dealing in higher-dimensional space, the problem
is similar. We use the term n-dimensional to refer to the fact that most product fam-
ilies have many different possible organizations. This is because each organization is
really a projection of the multi-dimensional family into a lesser dimensional space.
“This section provides justification for the fact that families are n-dimensional objects.
Attempts have been made to organize the product family requirements in a hierar-
chical fashion [69, 89, 57, 59]. Lutz noted in her attempt to organize the variabilities
into a tree that “there were several possible trees, with often no compelling reason to
select one possible tree over another” [69].
Brownsword and Clements present a shipboard command and control systems
family which contained 3000-5000 parameters of variation for each ship [15]. They

state that “the multitude of configuration parameters raises an issue which may well

59

warrant serious attention.” In addition, they present three different views of the
architectural layering of the base system that “do not conflict with each other; rather
they provide complementary explanations of the same ideas.”

Both these examples, as well as our own experience, illustrate the fact that often
a product family is multi-dimensional; therefore, a hierarchical decomposition is not
sufficient to capture the structure of the domain. As an example, mobile robots form
families along the dimensions of hardware platform (common basic features, but dif-
ferent modes of locomotion, different environmental sensors, different manipulators,
etc.) and behaviors (common basié behaviors, but they may also require wall follow-
ing, obstacle avoidance, mapping, etc.). We call families that decompose naturally
along such dimensions n-dimensional product families.

n-Dimensionality is common in software systems. Thus, software design and im-
plementations have already attempted solutions to the problems associated with hav-
ing an n-dimensional space. In software implementation, researchers have proposed
aspect-oriented programming [54, 55, 80] a technique that allows the programmer to
separate out one dimension of the program from another and then use an automated
tool to “weave” the dimensions back together again. The approach was first tried
successfully on separating out the locking and synchronization code from the rest of
of the code base using a tool called AspectJ [56).

Our approach is similar in structure to the notation of design spaces [63] and
extended design spaces (7, 6]. Lane states that design spaces were created to allow
a system designer to describe and classify the various architectural alternatives for a
software system [63]. A dimension in a design space represents a single variation in
a system characteristic or a single design choice; thus, a design space dimension is
related to the product family concept of a variability.

Both aspect-oriented programming and design spaces are promising techniques

56

Flying Craft FGS
Fixed Wing Helicopter : Tilt-Rotor |
FGS FGS | FGS !
{ =J

Figure 4.1: FGS product family covering flying craft

aimed at structuring the design and implementation of product lines. In addition,
there is much other work in structuring that has been done in the object oriented
community, and software architecture community that may be applicable to the re-
quirement phase. We clearly do not have the space to overview all of that work here.
Nevertheless, we want a technique that will work on the product family requirements.
The key, in our view, is to define a simple structuring mechanism which does not in-
troduce unnecessary design or implementation detail but which is still able to capture

the essence of the problem at hand.

4.1.2 Hierarchical Product Families

Suppose that a company wished to construct a flight guidance system (FGS) for
both fixed-wing aircraft and helicopters. Many of the tasks that the system has to
perform might be common across these two radically different aircraft: interaction
with other systems, deciding to level off at a particular altitude, mode transition logic
related to when it is legal to switch between the various operating modes. Therefore,
many requirements between these two systems will be the same, or very similar.
Nevertheless, the actual control of the aircraft is very different. Therefore, developing
a single set of commonalities and variabilities that span this entire domain is difficult.

Some would argue that this difficulty stems from the fact that the family is simply

37

too diverse to be considered a product line. However, it is clear that these systems
share much in common, which was the original, and in our view the most important,
criterion for being a family. Thus, we propose the concept of a hierarchical product
family.

Most previous attempts at product family structuring have focused on hierarchi-
cally grouping the variabilities while the commonalities remain the same for all family
members [69, 59]. Notable exceptions are Parnas [89] and Brownsword and Clements
who noted in their case study at CelciusTech [15] that sometimes product-lines exist
within the main product line. However, Parnas’ work is rooted in design and coding
choices. Brownsword and Clements mention this phenomenon in passing and apply
it in a more limited way than what we advocate.

In our approach, additional commonalities which are unrelated to the commonal-
ities of the parent product family can be added in the sub-families. Of course, these
additional commonalities cannot conflict with those in the parent family. The hierar-
chical decomposition of the FGS family is shown in Figure 4.1. Thus, the helicopter
sub-family can have significantly different requirements than for fixed-wing aircraft,
yet share many things in common as well.

This will eventually effect the architecture and structure of the systems. For ex-
ample, the product of the domain engineering for the parent family, Flying Craft
FGS, might be a set of reusable components, whereas the product of domain engi-
neering for the children might be a reference architecture or generation facility. The
architectures for the fixed-wing aircraft and the helicopters could differ significantly
and use the components from the parent family in different ways.

By structuring the requirements in this way, we have avoided imposing restrictive
design constraints on the family members and instead focus on the structure of the

domain itself. Furthermore, should the company wish to start building FGS systems

58

for an entirely new set of aircraft, for example, tilt-rotor aircraft, this could be done
while reusing many aspects of the FGS systems already implemented. This is also

shown in Figure 4.1.

4.1.3 Constraints on the Solution

When starting to develop a structuring technique for product family requirements
that would be able to deal with n-dimensional and hierarchical product families, we

determined that any such structuring technique must:

e Be based on structures that are present in the domain itself, not on implemen-

tation or design concerns,
e Be simple, allowing the analysts to capture the structure of the domain without
introducing complex notations or concepts,

e Be amenable to the types of structures observed in product family analysis, and

e Produce a readable and usable artifact that facilitates reasoning about the

structure of the domain.

We chose to explore a structuring technique based on a set-theoretic view of
product families. The notion of sets proves surprisingly useful for thinking about the
structure of a software product line, yet is simple and based upon well understood

principles.

4.2 Structuring Technique

One way to view a product family is as a set, where the boundaries of the set are
determined by the commonalities, and the individual members of the set are distin-

guished by the values of their variabilities (Figure 4.2). As the figure demonstrates,

59

__ Boundries of the set are
determined by the Commonalities

Individual family members are
—— distinguished from one another by
the values of the variabilities

_ Some family members may
theoretically exist, but not be built

Figure 4.2: A simple product family

it is entirely possible that some members of the family may theoretically exist but
not yet be built (shown in gray). Furthermore, the family may be undefined at some
points within the boundaries due to, for example, illegal or nonsensical combinations
of variability values. We will use this view of a product family throughout this sec-
tion to demonstrate how current approaches to product-line engineering might be

expanded to a greater class of systems.

4.2.1 Representing Hierarchical Product Families

The most basic structure that can be represented with the set theoretic approach is
the subset. Figure 4.3 shows a product family, A, which has been divided into two
subsets, B and C. Furthermore, C has been further divided into subsets D and E.
This corresponds to a hierarchical decomposition of the family.

Consider a member of family E, e;. The member e; must have all the commonali-
ties defined for E as well as have some value for all the variabilities in E. Furthermore,
because E is a subset of C and A, e; is also a member of families C and A. The general

definition for any family E which is a subset of another family C is as follows:

e E must include all of the commonalities in C.

60

(a) (b)

Figure 4.3: Hierarchical decomposition and subset structure

¢ E must include all of the variabilities in C; however, E may restrict the range

or options available in the variabilities.

¢ E can add additional commonalities which are not present in C as long as the
additional commonalities do not conflict with the commonalities or variabilities
in C. These new commonalities might come from a refinement of variabilities

in C or might be completely unrelated.

¢ E can define additional variabilities which are not present in C as long as those

variabilities do not conflict with the above.

The first criterion is straightforward and necessary for the subset E to be com-
pletely contained within C. The second criterion defines the fact that E may wish
to refine or restrict the values of the variabilities of C. For example, in the mobile
robotics domain, a variability across the entire domain might be that the maximum
speed of the mobile robot can vary from one to five miles per hour. However, subsets
might define a lesser maximum speed depending on the hardware involved. It is pos-
sible for this refinement to result in an additional commonality, for example, suppose
that we have aircraft that can use either radio altimeters, barometric altimeters, or

GPS altimeters to measure altitude (a variability); then, a subfamily of these aircraft

61

(a)

Figure 4.4: Abstract versus non-abstract families

could state as a commonality that all aircraft in that subfamily have only barometric
altimeters. Additional commonalities can also be added which are unrelated to the
parent family. For example, it is likely that the family of helicopters will need dif-
ferent commonalities than the family of fixed-wing aircraft. Finally, it is possible to
add additional variabilities.

The two cases of hierarchical decomposition are shown in Figure 4.4. Part (a) of
the figure demonstrates that the family R need not have any members that only exist
in R. In a sense, R is an abstract family, because any member of R must be either
a member of S or a member of T. This is similar to our FGS example from earlier,
where all family members are either helicopters or fixed-wing aircraft and it does not
make sense to talk about member which are only of the parent family. However, this
need not be the case, as Figure 4.4(b) demonstrates. In the mobile robotics domain
(see Section 4.5), we will have a basic robotic platform which will form the outer
family member. This outer family will not be abstract because there are some robots

which only conform to the minimum specification.

4.2.2 Intersection of Sub-Families

Another structure that can be represented using a set-theoretic approach is that of
set intersection. The ability to represent a set intersection distinguishes this approach

from the purely hierarchical structures which have been applied by others. This is

62

(a) (b)

Figure 4.5: Set intersection and non-hierarchical structure

shown in Figure 4.5.

Consider a member, m;, of M. By definition, m; is also a member of families K,
L, and J. Thus, m; must have all the commonalities of both K and L. In addition, M
is a subfamily of both families K and L (this is shown in the figure). The constraints

on any family M which is a subset of families K and L are as follows:

e M must include all the commonalities of both K and L.

¢ M must include all the variabilities of both K and L; however, it may restrict
those variabilities as above for subsets.

e M may introduce additional commonalities which are not present in either K
or L so long as those commonalities do not conflict with the commonalities or
variabilities in K or L.

¢ M may introduce additional variabilities which are not present in either K or L

so long as those variabilities do not conflict with the above.

These structures can be used to describe product families which are both n-

63

dimensional and hierarchical. Representing hierarchy is done primarily by using the
subset concept. Representing a dimension requires a bit more thought.

Dimensions represent alternate views of the product family based on some par-
ticular aspect of the commonalities and variabilities. For example, commonalities
and variabilities in the hardware platforms may be viewed as one dimension, and the
functionality of the family members viewed as another dimension. As mentioned pre-
viously, our notion of dimensions is similar to the notion of dimensions in extended
design spaces [6, 7]; however, we would advocate the choice of several primary dimen-
sions defined over cohesive aspects of the system and not make every variability a
dimension. Possible dimensions may be hardware platform, required behavior, fault
tolerance capabilities, etc. Some examples of dimensions are provided in Sections 4.3
and 4.5.

When a family or subfamily has been decomposed into several dimensions, we
expect to have to make a choice in each one of those dimensions in order to have a
valid family member. That is, we will have to instantiate the variabilities and select,
for example, both a hardware platform as well as the desired functions for a family
member.

When a family has been decomposed into several dimensions, we expect to have
to make a choice in each one of those dimensions in order to have a valid family

member.

4.2.3 Addressing Existing Issues

As we mentioned previously, current attempts at scoping the requirements for prod-
uct lines are thwarted by near-commonalities and complex dependencies among the
variability choices. Before we move on to the more detailed examples of the disserta-

tion, we will take a moment to give an overview of how our structuring technique of

64

Figure 4.6: Set representation of a near-commonality

n-dimensional and hierarchical product lines will help to solve the problems presented

by near-commonalities and complex variability dependencies.

Near-commonalities: A near-commonality (NC) is a commonality which is true
for almost all (e.g., all except one) member of the product family. Lutz states that in
her experience near commonalities “frequently had to be modeled” [69]. One solution
for near commonalities is to model them as variabilities; however, this is, in some
sense, a misrepresentation of their basic properties. The solution that Lutz advises is
to model it as a constrained commonality of the form “If not member n then NC;.”
However, a complex domain might contain numerous constrained commonalities with
conditions significantly more complex than the example just mentioned.

Figure 4.6 shows how a near-commonality is represented in our approach. The
near commonality, NC;, would simply be a property of family Q (and not of P). Thus,
the commonality naturally does not apply to n a member of only P but does apply
to any member of Q. This has several advantages. First, NC; is now a pure com-
monality of Q. Second, if another member of the family is introduced with reduced
functionality [69] it need only be added as a member of P and Q may remain un-
touched. Finally, the subset structure can act as a guide in determining that certain

components in the eventual application engineering environment will not be needed

65

for n.

Dependencies among options: In [69], Lutz cites modeling dependencies among
options as one issues that must be addressed in product family engineering effort.
A dependency is typically a constraint among the variabilities, for example, if vari-
ability V; has value B then variability V, must have option C. Ardis recommends
treating this constraint as a commonality. However, in our experience, without some
additional structuring, the domain could become littered with such commonalities;
in addition, it may not be clear given a set of constraints whether or not a particular
variability is viable.

In an approach where the commonalities and variabilities are qualified as above,
the subfamily has no explicit description and its definition is essentially distributed
across all the commonalities and variabilities that it has. If the family has many such
dependencies with complex interactions, it will rapidly become difficult to visualize
the structure of the domain. Furthermore, this distribution of the domain’s structure
to each variability and commonality makes changing the structure difficult and error
prone (in order to defined a sub-family, you must change every commonality and
variability that belongs to that sub-family).

In our approach, we can also represent constraints like these as commonalities.
However, we isolate them into logical groups by forming different subfamilies so that
their numbers do not become overwhelming. In the abstract example given above,
a subfamily would be defined where “V; has option B” and “V; has option C” are
both commonalities. This subfamily can be named and described in the requirements.
Furthermore, the relationship of one sub-family to another, i.e., the structure of the

domain, can be factored out making it easier to visualize and maintain in the future.

66

4.3 Flight Guidance System

In this section, we will discuss a small but illustrative subset of the FGS. Due to
concerns about proprietary information, the full FGS commonality analysis cannot
be given in this dissertation. Nevertheless, we can illustrate some key concepts with
the FGS that are in the public domain and can be published.

As discussed in Chapter 3, the FGS is responsible for deciding which lateral and
vertical modes of the aircraft are active. The lateral and vertical modes of the air-
craft determine a number of important properties about the aircraft’s operation, for
example, whether the system is looking to find a navigation source or not, whether
the plane is ascending or descending to a selected or flight plan altitude, and so on.

The following commonalities describe the overall structure of the FGS.

Cl Every FGS has a lateral axis and a vertical axis, each of which has one or more

modes.
C2 On every FGS, along each axis, exactly one mode shall be active at one time.

C3 Every FGS designates one mode for each axis (lateral and vertical) that shall
be made active in the event that no other mode on that axis is active. This is

called the default mode for that axis.

The ways in which each FGS differs is primarily in the number and type of modes
that are present on the various aircraft. The engineers think of the modes as pluggable
features; however, in reality there are dependencies among the choices of which modes
the aircraft contains (e.g., every aircraft with mode z also has mode y) as well as
subfamilies of the aircraft that contain the same collection of modes (e.g., every

aircraft a in the sub-family A contains modes my, my, ... m,).

V1 The set of modes along each axis varies from aircraft to aircraft

67

WithRolMode

Figure 4.7: Example of sub-families of FGS

V2 The mode which each FGS designates as the default varies from aircraft to

aircraft

V3 The FGS may or may not select the default mode for a particular axis upon

transfer of flight guidance computations

Each mode, for example, Roll Mode can be viewed as defining a sub-family of
FGSs that contain that mode. Thus, an FGS that contained Roll mode, Pitch Mode,

and Heading mode would exist at the intersection of these three sub-families.
CronlE very Roll-subfamily FGS has a Roll Mode
Croi2E very Roll-subfamily FGS uses a roll reference

Crou3T he roll reference is synchronized when the SYNC switch is pressed with the
Flight Director on

Vronl There may or may not be a roll knob to adjust the roll reference.
Vgonl.l The roll knob may have a detent angle of 0, 5, or 6 degrees.

Veon2 The Roll/Heading transition angle can assume values of 5 or 6 degrees

68

In this way, each mode can be specified. Figure 4.7 shows a simple example of
the intersection between the Roll and Heading modes. Although this example is
purely hypothetical, we can see from the figure that most FGSs support both Roll
and Heading mode while two FGSs do not support Roll mode. Notice that if only one
FGS did not support Roll mode this would be a near commonality; in our structuring
technique a near commonality is simply a special case of one sub-family having many
less members than another sub-family.

If two modes must occur together in every FGS, then they can be specified in
the same sub-family and that constraint can be noted as a commonality. This occurs
between several lateral and vertical modes that must synchronize with each other.

One example is the lateral and vertical go around modes.
CaalE very GA-subfamily FGS has both a lateral and a vertical Go Around mode

Cga2T he lateral and vertical go around modes are always either both active or both

cleared

Vgal The number and type of cockpit-located switched used to select go around

mode varies from aircraft to aircraft.

We have tried with the FGS to give a partial picture of what the complexity of
an industrial sized family might be like. We have discussed several modes of the
FGS and hypothesized how the interaction between the modes of the FGS might be
represented using our product family structuring approach. While it is unfortunate,
that the entire FGS cannot be included here, it is over 100 pages long and, therefore,
does not make a very illustrative example. Better illustrative examples are the ASW

and the Mobile Robots, which are discussed in the next two sections.

69

4.4 Altitude Switch (ASW)

Recall that the ASW family is a simple collection of devices that all perform some
action in response to changes in the altitude of the aircraft. The ASW is a much
simpler example than the FGS, but it illustrates many concepts about the product
family structuring approach. Furthermore, the ASW has the advantage that it may
be presented here in full, and not abbreviated as the FGS.

4.4.1 Commonalities and Variabilities for the ASW

The ASW family consists of systems on board the aircraft that use the values from
the various altimeters on board to make a choice among various options for actions
(one of which being to do nothing) and perform the chosen action. Therefore, some

high-level commonalities and variabilities are the following:

C1 All ASW systems will have a method of measuring the altitude of the aircraft

C1.1 The ASW system will use the information about the aircraft’s altitude to

make a decision as to what action the ASW system shall perform

V1 The actions that the ASW takes in response to the altitude and the criteria to

perform those actions varies from aircraft to aircraft

At this point, we have defined the ASW to be essentially a family of systems that
process the altitude and then can perform some action based on the altitude that is
measured. Of course, the ASW exists on board and aircraft of some kind and that
aircraft will have a specified number and type of altimeters. This is noted in the

following two variabilities.

V2 The number and type of Altimeters, devices that measure altitude, on board

each aircraft may vary.

70

V2.1 Some altimeters provide a numeric measure of the altitude (digital altime-
ters) whereas some altimeters simply indicate whether or not the altitude
is above or below a constant threshold which is determined when the al-

timeter is installed (analog altimeters).

Different manufacturers and/or different situations may dictate using different
algorithms to process and threshold the altitude. This is noted in the following

variabilities.

V3 In family members where there is more than one altimeter, a variety of smooth-
ing and/or thresholding algorithms may be used on the valid altitudes [C2.1]
to determine the estimated value for the true altitude or estimated value of

whether or not the aircraft is truly above or below a certain threshold.

V3.1 Methods for choosing numeric altitude from several numeric sources will

be mean, median, smallest, largest

V3.2 Methods for choosing whether or not the aircraft is above or below a
certain threshold from a variety of altimeters which are either thresh-
olded or numeric are any one above/below, all above/below, and majority

above/below.

All the altimeters that are used on-board the aircraft are required to provide a
measure of the validity of the measure. Furthermore, if the ASW cannot get a valid
(or high enough precision) estimate of the altitude, it should declare that the system
has failed. Therefore, we would like to record that fact as a commonality for the

ASW family.

C2 All Altimeters will provide an indication of whether or not the supplied altitude

is valid or not

71

C2.1 An altitude which is denoted to be invalid shall not be used in a compu-

tation to determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalid alti-
tudes) for a specified period of time, then the ASW will declare that the
system has failed. This period of time shall be constant for each family

member (i.e., determined at specification time).

V4 The period of time that the altitude must be invalid before the ASW will declare
a failure may vary between 2 seconds and 10 seconds from family member to

family member.

In order for other devices on board the aircraft to know that the ASW has failed,
the ASW must provide some kind of failure indication. Usually, this is done by having
the system in question cease to strobe a watchdog output. If the watchdog is not
present, then other devices on board the aircraft know that that piece of the system

is no long functioning for some reason.

C3 All ASW systems will provide a failure indication to the environment.

C3.1 The indication that the ASW has failed will be the fact that the ASW
has not strobed a watchdog timer within a specified amount of time. This
period of time shall be a constant for each family member (i.e., known at

specification time).

V5 The time interval with which the ASW must strobe the watchdog timer varies

from aircraft to aircraft.

The ASW also accepts an inhibit and a reset signal. The inhibit signal should
prevent the ASW from performing any action other than declaring a failure. The

reset signal should return the ASW to its initial state.

72

C4 The ASW shall accept an inhibit signal. While inhibited, the ASW shall not

attempt to perform any action other than declaring a failure.

C5 The ASW shall except a reset signal. When the reset signal is received, the
ASW shall return to its initial state.

The ASW has several operating modes in addition to the normal one described
above. The ASW should wait until receiving at least 5 seconds of valid altitude before

performing any action.

C6 The ASW shall receive at least 5 seconds of valid altitude upon startup before

entering normal operation.

Finally, the ASW has a reduced functionality mode that is activated when two
episodes of invalid altitude lasting at least one second occur within a minute of each
other. In the reduced functionality mode, if the ASW detects that an action should be
performed, it shall wait for a minimum of two seconds before checking the conditions
for action again. If, after that minimum delay, the conditions for action are still
satisfied, then it will perform the action. However, if after six seconds the conditions
are not satisfied then the ASW will discard that action and go back to waiting for

the aircraft to cross the threshold.

C7 The ASW shall enter reduced functionality mode when two episodes of invalid

altitude lasting at least one second occur within one minute of each other

C7.1 While in reduced functionality mode, the ASW will delay performing any
action by a minimum delay period (2 seconds) at which time if the condi-

tions for action are still satisfied the ASW will perform the action

73

C7.2 While in reduced functionality mode, the ASW will not wait to perform

an action longer than the maximum delay time (6 seconds).

C7.3 The ASW shall exit the reduced functionality mode upon receipt of one

minute of valid altitude data

As defined, the ASW system currently allows for almost any action to be per-
formed as a result of the estimated altitude. A subfamily of the broad ASW family
would be the class of ASW devices responsible for turning on or off a particular Device

of Interest (DOI) on board the aircraft.

CpoilT he ASW shall change the status (turn on or off) a Device of Interest (DOI)

when it crosses a certain threshold
VporlT he threshold for the ASW varies from 0 to 8024 feet from aircraft to aircraft

Vpor2W hether the ASW turns on/off the DOI when passing above/below the thresh-
old is a variability with nine possible choices (all combinations of do nothing,

turn on, and turn off in the above and below directions).

To deal with noisy data, or the aircraft flying near to the threshold altitude,
the DOI controlling ASW needs to have a certain hysteresis factor that is used to
determine how much the altitude of the plane must change in order to have the
DOI powered on or off again. The commonalities and variabilities that govern the

hysteresis function of the ASW are given below.

Cpoi2T he ASW shall employ a hysteresis factor to ensure that when the aircraft is
flying at approximately the threshold altitude noisy data from the altimeters
or slight variations in altitude do not cause the ASW to turn on/off the DOI in

rapid succession

74

Vpor3T he hysteresis factor may vary from aircraft to aircraft between 50 ft and 500

ft.

VpoidT he hysteresis factor may vary depending whether or not the aircraft is going

above or below the threshold.

Cpoi3Both the hysteresis factor for going above and the hysteresis factor for going
below shall be a constant for each particular aircraft (i.e., known at specification

time).

Finally, the ASW will received updates from the DOI whenever the status of the
DOI changes. This is important to confirm whether or not the DOI is responding to
the commands issued by the ASW as well as fulfill the requirement denoted by the

final commonality.

CpoidT he DOI shall give the ASW an indication of its status (on or off) whenever

that status changes

CpoidW henever the ASW submits a command to the DOI, it shall wait for a specified
period of time for the status of the DOI to change to reflect the command. If
the status does not change within the specified period of time, then the ASW
shall declare a failure. The period of time will be a constant for each family

member.

Vpor5T he period of time that the ASW will wait after issuing a command to the
DOI before indicating a failure if the DOI does not change status shall vary
between 1 second and 5 seconds from DOI to DOIL.

Cpoi6T he ASW shall not attempt to power on the DOI if the DOI is already on or
attempt to power off the DOI if the DOI is already off.

75

As we have presented the commonalities and variabilities for the ASW, some of
the structure of the ASW family is certainly visible. Nevertheless, the advantage of
separating the structure from the commonalities and variabilities is primarily that
the structure may be visualized independently. Some possible visualizations of the

ASW family structure are presented in the next section.

4.4.2 Structure and Members of the ASW Family

Even for a family as small and simple as the ASW, we can identify elements of
structure in the family. This identification is useful because it helps us to understand
the family and it is invaluable if, in the future, we would like to refactor the family
or incorporate the family as a part of a larger family. For example, we might like to
have one family that encompasses all the avionics devices built (not just the ASW).

Dimensions of the family are used as a visualization technique to separate out the
major choices of the family. Dividing a family into dimensions does not necessarily
mean partitioning all the commonalities and variabilities of the family. For the ASW,
we decided to concentrate on two primary dimensions when visualizing the structure:
(1) the choice of the altitude smoothing and/or thresholding algorithm and (2) the
major choice of functionality for the DOI. This decomposition is show in Figure 4.8.
Of course, there are more dimensions to the ASW family, for example, the various
types of altimeters might be considered a dimension.

Figure 4.8 depicts the various possible members of the ASW family. A notable
property of the figure is that there are no family members currently that use the
numeric altitude methods which we discussed in the commonalities and variabilities.
This is because we have only looked at a small sub-family of the possible behaviors
of the ASW family. In the future, we can envision adding all sorts of behaviors some

of which might use the numeric methods.

76

SRS

4
4
\8)
Q 0‘"\% ™
"\ %
> \oi\ ’ \°~$
” %0 %?J

. %

. QQ . (\Q . (\Q O(\
> 60\ > $°®\ z \\0
' W
\(\q s /’0
o“‘@e}o“‘ Ry
\0“‘
66

(4

..... 0 G G S SR S B R e S
..... e R B
..... S T T S S
..... AR AN S SR S S SR SR R
..... M SR S S S S s
..... $bobggog
..... Rt e o
..... O A S S S ¢ N
..... L S S S S e R
T ¥ v v » BV B B € 9@
© © 6 © © © @© & & O
£ £ £ £ £ £ o0 % © O
7]} 7] 7} 7} 7] 7] —] @
g ¢ ¢ o @ ¢ o £ = 3
£ £ £ £ £ £ T O 3§ <
F F = F = m o £t ©
ez 23z 23 55 8%
8 @ 8 s 8 © 2 § 3 §
<« @ T @ g @ z < z
2 £ 2 2 g T
s 8 O O
T ©
2 2 22

O\'
0°V\

o~\
) e}o*‘

Figure 4.8: The ASW family structure visualized in 2 dimensions

77

ASW Altitude
Algorithm
Dimansion

Numeric Threshokied
Algorithms Algorthms

X
Exteremes Madian Aversge \

Method Direction

Grealest Smallest Majority AnyOne AN Below Above

Figure 4.9: The structure of the Altitude Dimension for the ASW

The reader might note that the dimension of the family that shows the choice
of smoothing or thresholding algorithms has some structure. That is, either the
algorithm will have a numeric result and be a smoothing algorithm or it will have
a boolean result and be a thresholding algorithm. This structure is visualized in
Figure 4.9.

Visualizing the structure of the family in this way can be useful in developing a
better understanding of the system. It may be that some commonalities should be
made into more general statements and moved to the top-level family. Alternatively,
you may discover that certain commonalities and variabilities may be closely tied to
the current way of doing things and, thus, likely to change. These commonalities and
variabilities may be isolated by placing them in a subfamily. This is a benefit of our
structuring technique.

The decision model represents a recording of which choices for all the possible
variabilities result in current family members. Obviously, the more complex the

structure of the family, the more complex the decision model will be.

78

One way that the decision model can be written down is by simply noting which
choices are made for each family member. For the ASW family, we have done that

below for several ASW family members.

e (CS-123: This aircraft has one analog and one digital altimeter, turns on the
DOI when at least one altimeter is below 2000 feet, will not turn the DOI back
on until going 200 ft above the threshold, has a timeout of 4 seconds for altitude

staleness and 2 seconds for the DOIL.

o CS-134: This aircraft has one analog and two digital altimeter, turns on the
DOI when at least one altimeter is below 2000 feet, will not turn the DOI back
on until going 200 ft above the threshold, has a timeout of 4 seconds for altitude

staleness and 2 seconds for the DOI.

e DD-123: This aircraft has one analog and one digital altimeter, turns on the
DOI when at least one altimeter is below 2000 feet, will not turn the DOI back
on until going 250 ft above the threshold, has a timeout of 2 seconds for altitude

staleness and 2 seconds for the DOI.

Even so, there are a number of disadvantages to listing the family member con-
figurations in this way. First, it is difficult to tell whether all required variabilities
have been given values. Second, it is difficult to see family members that have the
same choices for the variability values. A tabular format is often used to represent
the decision model. A tabular decision model for the ASW family members that we
will consider in this methodology is presented in Figure 4.10.

In the next section, we describe the mobile robotics example, which better illus-

trates some the n-dimensional and hierarchical structuring of the product families.

79

Variability CS-123 CS-134 DD-123 DD-134 EF-155
of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3
Threshold Algo. Any Any Any Majority Majority
Invalid Alt. Failure 4s 2s 2s 2s 2s
Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft
Go Above Action None None None None Turn Off
Go Below Action Turn On Turn On Turn On Turn On Turn On
Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft
Go Below Hyst. NA NA NA NA 200 ft
DOI timeout 2s 2s 2s 2s 2s

Figure 4.10: A tabular representation of the ASW family decision model

4.5 Mobile Robotics

As mentioned in Chapter 3, the mobile robotics domain breaks down along two clear
dimensions: the hardware platform and the desired behavior. This section describes
in detail the commonalities and variabilities associated with these two dimensions
and then presents an overview of how the structuring technique works on the family

as a whole.

4.5.1 Hardware Dimension

Along the hardware dimension, we will consider a limited subset of the robot domain
containing three families of hardware. The actual domain is much more complex; it
includes many more types of sensors and different actuators, for example, a gripper

or robotic arm that can be used to pickup and move objects in the environment. We

80

will consider the following three classes of mobile robotic hardware in this section.

1. A basic robot with forward and backward motion capabilities, a range sensor
that give distance to the nearest obstacle and whether or not the obstacle is on

the right or on the left, and a forward collision detection mechanism.

2. The basic robot with the ability to distinguish between obstacles that are
straight ahead versus only the right or left (i.e., better granularity in the esti-

mation of the obstacle’s position).

3. The basic robot with the ability to distinguish the color of objects in its envi-

ronment.

Basic platform: A basic feature of our robotic platform will be that it can move
around its environment in some fashion. Thus a common feature of the robots is the

following:

Cyl.1 Each platform will provide a basic means of locomotion; it will have the ability
to turn a specified number of degrees from the initial heading, move forward,

move backward, and stop.

Nevertheless, the robotic platforms that we will consider differ greatly. Some
platforms are commercially built whereas others are built in-house, for example, out
of Lego building blocks and small motors. The following variabilities capture these

ideas:
Vu1.3 The hardware comprising the robotic platform varies
Vu1l.3a The means of locomotion may vary (e.g. treads, wheels, legs, etc.)

Vi1.3b The maximum speed of the robot varies.

81

Vy1.3¢ The control of locomotion varies. The locomotion system may provide
simple on/off values or real or digital valued representation of speed and

direction.

Vg1.3d The type of input expected by the locomotion system varies. It may
expect boolean, real, or digital values indicating speed and direction of the

platform.

Vi1.3e The size of the platform varies. This will dictate the amount of room

needed to turn or avoid an obstacle.

In order to avoid running into obstacles in the environment, the robot must have
some kind of range finder. The platform must also be able to tell whether or not the
obstacle is on the right or left so that it can take actions to avoid hitting the obstacle.
However, range finders vary significantly in the type and quality of information they
provide. For example, a sonar sensor provides a wide field of detection but is noisy
and inaccurate. A laser range finder, on the other hand, will provide distance with

high accuracy and can detect even small obstacles.

Cyl.2 All platforms will have at least one range finder that will provide input to the

system regarding the detection of an obstacle.

Cy1.2a The range finder will provide an indication of the distance to the ob-

stacle.

Cy1.2b The range finder will provide an indication of the location (right or left)

of the obstacle in relation to the robot.

Vyl.1 The number and type of devices used for range finding is likely to vary. The
type of output generated by the range finder varies. Different range finders

82

may provide output as a real-valued estimate, a digital estimate, or a boolean

indication of obstacle detection.

Finally, because the mobile robots operate with such noisy and inaccurate sensors
it is a certainty that they will occasionally have collisions. Thus, platforms must
have a method of detecting collisions so that they can perform recovery actions in
the behaviors. This could be implemented in a variety of different ways, for example,
buy installing bumpers on the robot or by detecting that the motors that drive the

wheels have stalled.
Cul.3 All platforms will have at least one mechanism for detecting collisions.

Vul.2 The number and type of collision sensors(s) varies and the type of output

generated by the collision sensor varies.

Enhanced obstacle detection: Some platforms may have more advanced sensors
to detect obstacles. For example, a robot with an array of sonar sensors arranged in an
arc can get much more information about potential obstacles than merely whether
they are on the right or on the left. For enhanced obstacle detection, the robotic
platform should be able to detect whether or not it has an obstacle in front of it in

addition to obstacles on the right and left.

Cu2.1 Platforms will have the ability to distinguish whether an obstacle exists di-
rectly in front of them as well as whether it is on the right or on the left. See

related [Cy1.2b]

Vyu2.1 The granularity of obstacle position detected will vary. For example, some
platforms may provide an enumerated indication of left, right, or front for the

obstacle whereas some may provide an estimated degrees to the obstacle.

83

This sensing capability allows the robot to perform more complex behaviors, for

example, maneuvering closer to obstacles or going through doors.

Environmental vision: Some robots may be equipped with a camera or other
sensing device that can give them information about the color objects in their en-
vironment. The type and quality of robotic vision systems varies greatly; however,

most can distinguish between primary colors.

Cy3.1 Platforms will have a sensor capable of determining the color of objects in their
environment; for example, the sensor should be able to distinguish between red

objects and blue objects.

4.5.2 Behavioral Dimension

The behavioral dimension defines what the robot does. Of course, the behavior of
the robot is highly related to the hardware dimension, which constrains what the
robot can do and what information about the environment is available. Nevertheless,
to a large extent the behaviors can and should be reused across different hardware
platforms. The spectrum of behaviors possible, even with the limited hardware classes
that we have defined, is large. For the purposes of this report, we only have space
to discuss a few of them. Thus, along the behavioral dimension, we will consider the

following classes of behavior.

1. Random exploration, where the robot moves around its environment attempting

to avoid obstacles.
2. Random exploration with the ability to negotiate doors.

3. Random exploration with the ability to signal when it encounters objects of a

particular color.

84

Random exploration: Rodney Brooks [14] recommends a layered architecture
of robotic behaviors with a simple reactive behavior being on the lowest level and
higher-level behaviors built on top of this. When the robot encounters a problem,
for example, a collision, in a higher-level behavior, then the higher-level behavior is
suspended by a lower-level behavior designed to correct the problem. Our approach
to modeling the behavioral dimension is similar in that our basic behavior is a random
environmental exploration and more complex behaviors are built on top of it. Note,
however, that we have just chosen Brooks’ subsumption architecture as an example
and that we could have easily chosen another method of structuring the behavioral
method. The real point is that the two dimensions of the mobile robotics system
should be able to be structured independently.

Our basic behavior is a random exploration; while exploring, the robot should

attempt to avoid obstacles in the environment.

Cgl.1 The robot shall attempt to avoid colliding with obstacles in its environment
using its sensors to detect obstacle(s) and changing its course or speed to avoid

the obstacle.

Vgl1.1 Although detected by the robot’s sensors, an object may or may not be consid-
ered an obstacle depending on the robot’s mode of operation. See, for example,

[CB2.1a]

As mentioned previously, because of the robot’s noisy and inaccurate sensors it is
likely that the robot will sometimes collide with an obstacle. When this occurs, the

robot should attempt to recover from the collision and continue exploration.

Cgl.2 If the robot collides with an obstacle, it shall attempt to recover from the

collision.

85

V1.2 Successive collisions (i.e., a collision during the recovery from a previous colli-
sion) may result in the robot shutting down all activity and declaring failure.

The number collisions in a chain that the robot can tolerate varies.

The random exploration behavior coexists with all the other possible behaviors
that we might define. In the absence of any obstacle or collision, the robot will
potentially be performing some other functions which are defined by a subfamily.
However, this family is not abstract; thus, if no other behaviors are specified the

robot will move forward at full speed.

V1.3 In the absence of an obstacle or collision, the behavior of the robot may be

further specified by a sub-family

Cpl.3 In the absence of an obstacle, collision, or any other specified behavior, the

robot will move forward at maximum speed.

Door navigation: Maneuvering through a doorway is difficult for a mobile robot.
Often, obstacle detection sensors provide little information about the environment;
thus, doorways are often not seen as viable passageways. Furthermore, it is difficult

for the robot to find doorways in the first place given the noisy sensor data it receives.
Cgp2.1 The robot shall attempt to locate doors in its environment

Cgp2.1a Once the robot has found what it believes to be a door, it shall not consider

the sides of the door to be obstacles as the door is navigated. See [Cpl.1],

[Vpl.1].

V2.1 The width of the door which can be navigated by the robot will vary according
to the width of the robotic platform and the quality of the on-board sensors.

86

Basic Platform

N

Enhanced

Both

Environmental

Obstacie Vision
Detaction ! 4 Pioneer wi
\/ -
Both

Figure 4.11: The mobile robot family along the hardware dimension

Environmental interpretation: This behavior allows the robot to signal when
it encounters a particular object in the environment. That object or objects will be

identified by a particular color.

Cg3.1 The robot will signal when it has detected an object in its environment of the

desired color.

VB3.1 The color of the object(s) to be detected will vary and may be configurable at

run time.

4.5.3 The Whole Family

The real mobile robotics domain is significantly more complex than space allows
us to present in this dissertation. For example, we have not discussed whether or
not the robot can move objects in its environment (with a gripper, for example).
Nevertheless, we can illustrate some interesting properties of the domain even with
this limited example.

There are several ways of visualizing the mobile robot product family. First, we
will examine the mobile robot family along the hardware dimension (Figure 4.11).

Notice that family members can fall into one of four different categories. The robot

87

E
: f
5
o
Both ——------- @-oooeeoe @ @----eeoe- @-----oo-
Environmental
Vision e *
Enhanced Obstacle
Detection * 14
Basic Platform L S
% —>
g § § 5 E w5 % Behavior
2F 0% E & o
S O 2 < 1)
- S [=] -
e §5 8
(1] Z c o
w =

Figure 4.12: A possible 2-dimensional view of the robot product-line

may have only the basic capability, in which case it exists only for the family Basic
Platform. This is the case for LegoBot, The robot may have either one or the other of
the additional hardware capabilities specified by the Enhanced Obstacle Detection or
Environmental Vision. Finally, the robot may posses both the additional capabilities
of Enhanced Obstacle Detection and Environmental Vision; therefore, it lies in the
intersection of those two subfamilies. This is only one slice of the system, however,
and if we were to look at the mobile robot family along the behavioral dimension
we would see a similar picture. A somewhat more effective means of viewing 2-
dimensional product family is in a 2-dimensional grid as shown in Figure 4.12.

The representation is symmetrical in this case because of the one-to-one mapping
between behavioral subfamilies and hardware subfamilies. The full mobile robotic do-

main, however, is not symmetrical. In the full domain, behaviors may be composed

88

and combined to form a composite behavior. For example, we might envision a be-
havior which includes the door navigation, combined with a mapping function, a wall
following behavior, and a high-level planner. The mapping and high-level planning
behaviors will need to communicate with the lower level random exploration, door
navigation, and wall following to direct the robot towards high-level goals. However,
if the robot collides with an obstacle, then the lower level behavior will take over and
recover from the collision. Thus the structuring of the behavioral dimension is much
more complex and resembles Brooks’ subsumptive architecture [14]. Furthermore,
defining the behaviors independent of the hardware allows us to focus on only the
behaviors and their interactions (a significant problem in an of itself).

These combinations of behaviors might require several different sets in the hard-
ware domain, which will have sub-families that define, for example, robots with grip-
pers, robots with bumpers, robots that have radio communications devices, and so
forth. Thus, it is generally not the case in the full domain that a behavior will re-
quire exactly one subset in the hardware dimension or that the behavior and hardware
dimensions have the same structure. By defining the intersection of the hardware di-
mension with the behavioral dimension, we define which family members are viable
and which are not.

The division of the system into behavioral and hardware dimensions is a classical
one which; however, these are not the only two dimensions possible. For instance,
performance, for example, battery life, might be modeled as a separate dimension of

the system.

4.6 Evaluation and Summary

The structuring technique presented results in the creation of more families within

the domain than with a traditional approach. However, these sub-families are more

89

cohesive and simpler than would be the case if we created just one top level-family. We
believe that this provides several benefits. First, the top-level family can now be much
broader than was previously possible. Second, the overall family can be expanded
and contracted by adding and subtracting sub-families. Finally, these techniques will
allow a family to be more easily refactored as the definition of the family evolves over
time.

The ability to draw a larger product family was an essential requirement for the
structuring technique. This grows out of our own experiences with mobile robotics [22,
106], where we had difficulty in applying the product family approach. This difficulty
stems from the fact that the mobile robotics domain is both n-dimensional and hier-
archical.

The mobile robotics domain breaks down along two clear dimensions: the hard-
ware platform and the desired behavior. Each hardware platform conforms to a basic
specification: it can move forward and backward, turn left and right, sense whether
or not an object is in front of it. The hardware platform may also be equipped with a
variety of sensors and actuators that give it additional capabilities; and, the various
sensors differ greatly in the speed and accuracy with which they provide information.
Thus, on the hardware side, there are many different configurations that must be
modeled.

On the behavior side, we can imagine that a basic behavior might be a random
exploration where the primary goal of the robot is collision avoidance and recovery.
More complex behaviors can be added, for example, wall following, going through
doors, and finding particular objects. Furthermore, those behaviors may be com-
posed and combined to form a composite behavior. We might envision a behavior
which includes the door navigation, a wall following behavior, and a high-level plan-

ner. The high-level planning behavior needs to communicate with the random ex-

90

ploration, door navigation, and wall following to direct the robot towards high-level
goals. However, if the robot collides with an obstacle, then the lower level behav-
ior will take over and recover from the collision. Thus structure of the behavioral
dimension is much different from the hardware dimension and resembles Brooks’ sub-
sumptive architecture [14].

Certainly, a domain such as mobile robotics which absolutely requires n-dimensional
and hierarchical product families will necessarily be more complex than a domain that
does not require these techniques. Nevertheless, any domain can benefit from reuse
of the artifacts at the top of the family hierarchy and a more traditional cost-benefit
will exist towards the leaves of the family (along each particular dimension). Even in
a domain such as the ASW or the FGS, the requirements benefit from the ability to
clearly separate the concerns of the various modes and denote constraints specifically
to when two modes occur together.

Another benefit of the technique is the ability to expand and contract the family
as necessary. For example, suppose that we discover that we have a new kind of
DOI which has three states instead of two (e.g., Off, Low, and High). Clearly, our
commonalities and variabilities are oriented towards a DOI that is either On or Off;
nevertheless, this new DOI will share much in common with the two state DOI. To
accommodate this change, commonality [Cpo;1] and variability | Vpo;2 | will need
to be updated to reflect the larger DOI family. Then, we may define two subfamilies
of the larger DOI family - one for two-state DOI and one for three-state DOI; or, we
may choose to model an n-state DOI. In any event, the vast majority of the ASW
family specification will be isolated by the structure that we have chosen for the
family.

This ability to redraw and rework pieces of the commonality analysis while be-

ing confident of not affecting other parts of it is essential because it allows a more

91

incremental development of product-lines than is facilitated by current approaches.
Furthermore, it facilitates family refactoring; that is, the family can be redefined
more easily as the product line evolves over time. Thus, this structuring technique
has much potential to increase the usefulness of the product family approach.

One of the barriers to traditional product family approaches is that the whole
organization must change to accommodate product-line oriented development. Many
resources are required to develop the domain engineering support for the entire prod-
uct line while at the same time continuing to produce products for existing customers.
Our approach allows an organization to start out with a high-level product family
and reuse just a few key pieces between the major product areas. As the payoff from
this reuse makes more organizations resources available, the organization can then
afford to make the family more rich (by refactoring and/or adding sub-families) and
thus achieving more payoff from the effort.

Of course, these benefits do not come for free. The broader and more flexible
view of product families allowed by our techniques will result in families which are
more complex than traditional families. In addition, because of this broader view,
it may be more difficult to determine what constitutes a viable family under our
approach. Almost anything is related in some fashion or other and it may be difficult
for organizations to decide when to define an encompassing family for a particular
group of subfamilies. Nevertheless, we feel that these techniques hold promise and
may serve to advance the frontiers of product-line engineering.

The cost-benefit analysis of our product-line engineering approach is more difficult
because one must not only consider the cost of developing domain engineering support
of the particular sub-family in which the member resides, but also all sub-families
above that one in the product family hierarchy. Suppose that we wanted to build

a family of FGS systems for both fixed-wing aircraft and helicopters. The cost-

92

Cost s
A #1: 1/2 Cost of Flying Craft FGS y
#2: Cost of Fixed-Wing FGS Vs
#3: Cost of Helicopter FGS /

Payoff Point for
Helicopter FGS

#3
#2 Payoff Point for
N / Fixed-Wing FGS
-+ 7
/
#1 /
. 74 »

Family Members

Figure 4.13: Cost-benefit of the FGS Family

93

benefit analysis for this family is shown in Figure 4.13. To build either a fixed-wing
aircraft or a helicopter, we must have built the assets in the Flying Craft FGS family;
therefore, we can amortize the cost of the Flying Craft FGS over both the fixed-wing
and helicopter families. This is the cost #1 in the figure. Next, if we want to build
the assets for the fixed wing family, we must spend some additional amount over
an above the shared cost for the Flying Craft FGS. This is noted by the cost #2
in the figure. Once we know what both of these costs are, we can determine how
many fixed-wing FGS systems we must build in order for the family development
effort to be justified. However, the cost of building the helicopter assets may well be
different from the cost of building the fixed-wind assets (this is cost #3 on the figure).
Therefore, if the helicopter assets are more expensive to construct we will have to
build more of the helicopter FGS members to justify the costs. As the structure
of the family becomes more complex, for example, through the creation of a deeper
hierarchies and/or the use of multiple dimensions with constraints between them, this
relationship will become more complex. This dissertation does not address how to
perform a cost-benefit analysis in the most complex scenarios, but it is a topic that
should be addressed in the future.

In this chapter, we have taken a look at the structures that are present in many
product families and given our own approach to representing that structure in a usable
way, illustrated with examples from the ASW, FGS, and mobile robotics families.
This chapter provided one of the major building blocks for the methodology. The
next chapter will discuss the other major building block for the methodology, the
work that was done on specification-based prototyping. These two building blocks

will be tied together in Chapter 6.

Chapter 5
Methodology Foundations

The goal of this chapter is to provide a framework for the methodology that is de-
scribed in Chapter 6. Much of the work presented in here is based on our work with
specification-based prototyping [109, 110, 108] and the NIMBUS environment [105,
104]. This chapter is also based on Miller’s extended four-variable model [83], which
was developed in collaboration with the work at the University of Minnesota.

As discussed in Chapter 2, the system requirements should always be expressed
in terms of the physical process. These requirements are determined by the need
to change the world in which the system operates and are represented by the REQ
relation. The IN and OUT relations are determined by the sensors and actuators used
in the system. For example, to measure the altitude we may use a radio altimeter
providing the measured altitude as an integer value. Similarly, to turn on a device,
a certain code may have to be transmitted over a serial line. Armed with the REQ,
IN, and OUT relations we can derive the SOFT relation.

All of these relations are likely to change over the lifetime of the controller. Fur-
thermore, the sensors and actuators are likely to change independently of the require-
ments as new hardware becomes available or the software is used in subtly different
operating environments. If any one of the REQ, IN, or OUT relations changes, the
SOFT relation must be modified. What is needed is to provide a smooth transition
from system requirements (REQ) to software requirements (SOFT) and to isolate the

impact of requirements, sensor, and actuator changes.

94

95

The question is, how shall we do this and how shall we structure the SOFT
relation? Our results in this area are presented in the next section, where we discuss
how to structure the SOFT relation, and in the section after that, where we discuss
the overall process to be used in refining the requirements. Finally, we explain how
formal languages and tools greatly benefit this system model and describe briefly
describe results that we have achieved with the research toolset at the University of

Minnesota.

5.1 The FORMpcs System Model

This section introduces the FORM p¢s system model, which is essentially an extended
version of the four variable model that was presented in Chapter 2.

There are several variations of the four-variable model that one could imagine
might be useful on occasion. For example, it may be helpful to layer the IN and OUT
relations into levels much like the ISO Reference Model for communication protocols.
Another variation is to “glue” the controlled variables of one or more models to the
monitored variables of another model to create a larger system specification or to
split a large model up into several smaller models (although care must be taken not
to fall into the trap of introducing implementation bias).

The traditional four variable model leaves the software developer with the question
of how to structure an implementation of SOFT, i.e., how to design the software.
One appealing approach is to “stretch” the SOFT into the relations IN’, REQ’, and
OUT’ as shown in Figure 5.1 [83]. IN’ takes the measured input and reconstructs
an estimate of the physical quantities in MON. The OUT’ relation maps the internal
representation of the controlled variables to the output needed for the actuators to
manipulate the actual controlled variables. Given the IN’ and OUT’ relations, the

REQ’ relation will now be essentially isomorphic to the REQ relation and, thus, be

96

MON ivall > CON

\) REQ' Coy

INPUT SOFT > ouTPUT

Figure 5.1: The FORMpcs system model adapted from [83, 109)

robust in the face of likely changes to the IN and OUT relations (sensor and actuator
changes). This conceptual view creates a virtual image of the MON and the CON
variables in software, an approach often advocated in object-oriented design methods.

Decomposing the software in this way has several benefits. First, if MON and
CON are chosen correctly, the portion of the software specified by IN’ will change
only as the input hardware changes. Likewise, the portion of the software specified
by OUT’ will change only as the output hardware changes. In a similar fashion, the
portion of the software specified by REQ’ will be isolated from hardware changes
and will change only in response to changes in REQ, the system requirements. Since
customer driven changes and hardware driven changes arise for different reasons, this
helps to make the software more robust in the face of change. It also greatly simplifies

tracing the system requirements to the software requirements.

97

Of course, it is important to note that MON’ and CON’ are not the same as
the system level variables represented by MON and CON. This is highlighted in
the figure. Small differences in value are introduced both by the hardware and the
software. Differences in timing are introduced when sensing and setting the input
and output variables. For example, the value of an aircraft’s altitude created in
software is always going to lag behind and differ somewhat from the aircraft’s true
altitude. In safety-critical applications, the existence of these differences must be
taken into account. However, if they are well within the tolerances of the system, the
paradigm of Figure 5.1 provides a natural conceptual model relating the system and
the software requirements. This directly addresses the issue of integrating systems
and software engineering.

Nevertheless, even armed with this technique for structuring the SOFT relation, it
is not clear how exactly to proceed. This topic of how the refinement process should

be organized is discussed in the next section.

5.2 The FORMpcs Process Framework

The previous section described an overall structure for the SOFT relation. This sec-
tion describes a process for deriving the SOFT relation given the REQ relation. The
specification starts as a high-level model of the system requirements (i.e., the REQ
relation). This model is is then iteratively refined, adding more detail as the system
becomes better understood. During each iteration, if a formal, executable specifica-
tion language is used, the specification is executable and can therefore be used as the
prototype of the proposed system. Eventually, the system requirements will be well-
defined and the system engineer must allocate requirements to particular hardware
and software components within the system. At that point, the system requirements

can be refined to the software requirements by adding descriptions pertaining to the

98

MON' —REQ'9» CON'

4
MON' —REQ'9» CON'
MON —REQ'$» CON N oir IN our
MON & CON&
INPUT OUTPUT
\
INPUT OUTPUT

Figure 5.2: Refining REQ to SOFT

actual hardware with which the software must interact.

From the start of the modeling effort, we know that we will not be able to directly
access the monitored and controlled variables—we must use sensors and actuators.
At this early stage, we may not know exactly what hardware will be used for sensors
and actuators; but, we do know that we must use something and we may as well
prepare for it. By simply encapsulating the monitored and controlled variables we
can get a model that is essentially isomorphic to the requirements model; the only
difference is that this model is more suited for the refinement steps that will follow
as the surrounding system is completed.

The method of this encapsulation differs depending on the language used. If the
language does not have a modularity construct, then extra variables or functions can
be introduced in the specification to isolate the REQ’ behavior from the hardware
specification. If the language does have a modularity construct, the specifier may
choose to define a module that computes the REQ’ relation and then the module’s
interface naturally provides the encapsulation.

As the hardware components of the system are defined (either developed in house

99

or procured), the IN and OUT relations can be rigorously specified. Figure 5.2 shows
a high-level view of the refinement process. At the far left of the figure, we start the
process with just a notion of the REQ’ relation and evaluate REQ’ with the monitored
and controlled variables (we basically assume that the sensors and actuators are
perfect-there are no delays or noise). Next, we move into an intermediate stage as
we add more and more detail to the IN’ and OUT’ relations. During this stage, the
specifications for some sensors and actuators might be completely finished while the
specifications of others are under development; this is the reason that both MON
and INPUT are noted as the sources for the IN’ relation (and similarly for the OUT’
relation). Finally, we will arrive at a complete specification of both the IN” and OUT’
relations, shown at the far right of the figure.

We have shown in the abstract how the SOFT relation should be structured and
our conception of the process that should be used to refine the REQ relation to the
SOFT relation. In the next sections, we illustrate this approach by applying it to the
ASW and the Mobile Robotics examples.

5.2.1 The ASW Example

This section describes the overall process of how the ASW specification was developed,
using examples taken from the specification. In the next chapter, we go into more
detail about exactly how this was done as we discuss the methodology itself.

We identified the aircraft altitude as one monitored variable and the commands
that the ASW sends to the device of interest as a controlled variable. Both are
clearly concepts in the physical world, and thus suitable candidates as monitored
and controlled variables for the requirements model. In our case, using a function,
MeasuredAltitude(), instead of the monitored variable Altitude will shield the specifi-

cation from possible changes in how the altitude measure is delivered to the software.

100

DigitalAlt_1
Altitede DigitalAlt_2

AnalogAlt
Figure 5.3: The true altitude is mapped to three software inputs.

By performing this encapsulation for all monitored and controlled variables we refine
REQ to REQ’, a mapping from estimates of the monitored variables to an internal
representation of the controlled variables.

The IN and OUT models represent our assumptions about how the sensors and
actuators operate. In this version of the altitude switch we will use one analog and
two digital altimeters. Thus, we will map the true altitude in the physical world to
three software inputs (Figure 5.3).

In the case of the digital altimeter, the altitude will be reported over an ARINC-
429 low speed bus as a signed floating point value that represents the altitude as
a fraction of 8,192 ft. If we ignore inaccuracies introduced in the altitude measure
and problems caused by the limited resolution of the ARINC-429 word, the transfer

function for the digital altitude measures can be defined as

Altitude
8192

The analog altimeter operates in a completely different way. Due to considerations

Digital Alt =

of cost and simplicity of construction, the analog altimeter does not provide an actual
altitude value, only a Boolean indication if the measured altitude is above or below
a hardwired threshold (defined to be the same as the one required in the altitude
switch). Assuming again an ideal measure of the true altitude, the transfer function

for the analog altimeter could be modeled as

101

Above if Altitude > Threshold
Below if Altitude < Threshold

AnalogAlt =

In addition, all three altimeters provide an indication regarding the quality of the
altitude measures.

With the information about the sensor (IN) and actuator (OUT) relations, we can
start refining the REQ’ relation towards SOFT. In our case we must model, among
other things, the three sources of altitude information and fuse them to one estimate
whether we are above or below the threshold altitude. To achieve this, we refine the
IN’ relation in our model.

In the refined model, internal models of the perceived state of the sensors have
been included in the state machine as a representation of the IN’ relation for Altitude.
Instead of the idealistic true altitude used when evaluating REQ, the specification
now takes two digital altitude measures and one analog estimate of the altitude as
input. This BelowThreshold() macro is shown in Figure 5.4. Note that the figure uses
a simple RSML ™ construct for expressing Boolean conditions in disjunctive normal
form. A much more detailed introduction to RSML™® is provided later in Chapter 7.
Thanks to the structuring of the SOFT relation, this refinement could be done with
minimal changes to the REQ’ relation As the components in the environment are
developed, this process will be repeated for all inputs and outputs until a detailed

definition of the SOFT relation is derived.

5.2.2 The Mobile Robotics Example

The mobile robotics domain’s dimensions coincide with the breakdown of the SOFT
relation into IN’, OUT’, and REQ’ — those sections of the relation dealing with the

platform are confined to IN’ and OUT’ while those sections dealing with the behavior

102

BelowThreshold

Parameters: NONE

Condition:
MeasuredDigital Alt(DigitalAlt]) <= AltitudeThreshold TI]*
DigitalAltimeter] _Ok() T
MeasuredDigitalAl(DigitalAlt2) <= AltitudeThreshold T]
DigitalAltimeter2_Ok(* T
AnalogAltitudeMeasure() = Below T
AnalogAltimeter_Ok() sl iT

Figure 5.4: Macro modified to handle the tree inputs instead of the true altitude as
it did in the REQ model.

are primarily confined to REQ. Therefore, in the mobile robotics domain we will have
a number of different REQ relations, one for each behavior, and an IN’ and OUT’
relations, one set per platform. In this section we will consider only the random
exploration behavior and concentrate on the differences between the platforms.

We begin with a short discussion of the REQ relation. To capture the desired
behavior we must discover monitored and controlled variables in the environment
that will allow us to build the formal model. In addition, while evaluating candidates
for monitored and controlled variables we must keep in mind that the REQ model
shall apply to all members of the product family.

We identified a robot’s speed and heading as controlled variables. Speed ranges from
0 to 100 and can be mapped into a speed for each family member using the maximum
speed of the particular robot. Heading ranges from -180 to 180 and indicates the

number of degrees that the robot may have to turn to avoid an obstacle.

103

Reactive_Control

Figure 5.5: Mobile Robotics platform Random Exploration REQ relation

We identified Collision, Range, and ObstacleOrientation as monitored variables.
The Collision variable is simply a Boolean value which is true when there is a collision
and false otherwise. The Range variable is the distance from the robot to the nearest
obstacle and the ObstacleOrientation denotes whether the obstacle is on the right
or left of the robot. These variables clearly reside in the system domain and are
sufficient to model the desired behavior. If the monitored and controlled variables
are chosen appropriately, the specification of the REQ relation will be focused on the
issues which are central to the requirements on the system.

Figure 5.5 shows that the REQ relation definition at the top level is split between

two state variables: Failure and Normal The Failure state variable encapsulates the

[State Variabiq

Normal

Location: Reactive_Control

Transition: Startup— Cruise_Forward

Condition:

TIME>2s

..Failure IN_STATE Ok

Transitlon; Cruise_Forward—¥ Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE

..Failure IN_STATE Ok

Transition: Cruise_Forward — Avoid_Obstacle

Condition:

ObstacieDetectedMacro() = TRUE

CollisionDetectedMacro() = FALSE

..Failure IN_STATE Ok

Transition: Collision_Recover —#Cruise_Forward

Conditon:

Prev_Step(..Robot_Recover_Action IN_STATE Done)

..Failure IN_STATE Ok

Transition: Avoid_Obstacle — Cruise_Forward

Condition:

Prev_Step(..Robot_Avoid_Action IN_STATE Done)

..Failure IN_STATE Ok

Transition: Avoid_Obstacle — Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE

..Failure IN_STATE Ok

Figure 5.6: The definition of the Normal state variable

104

105

failure conditions of the REQ relation, whereas the Normal state variable describes
the how the robot transitions between the various high-level behaviors discussed at
the introduction to this section (obstacle avoidance, collision recovery, etc.). For the
remainder of our discussion of REQ, we will focus on the Normal state variable where
this aspect of the requirements is captured (Figure 5.6).

The Normal variable defaults to the Startup value. This allows the specification to
perform various initialization tasks and checks before the main behavior takes over.
The first transition in Figure 5.6 states that after two seconds, the specification will
enter the Cruise_Forward state.

The next two transitions govern the way that the Normalstate variable can change
from the Cruise.Forward value. If a collision is detected, then the state variable
changes to the Collision.Recover state. If an obstacle is detected, then the specifi-
cation will enter the Avoid_Obstacle state. Otherwise, the value of the Normal state
variable will remain unchanged.

The Cruise_Forward behavior becomes active after the avoidance/recovery action
has been completed. We accomplished this in the mobile robotics specification by
providing a “done” state in each of the sub-behaviors. This is illustrated by the fifth
and sixth transitions in Figure 5.6.

Finally, it is also possible to transition from Awvoid_Obstacle directly to Colli-
sion_Recover if, for example, the robot hits an undetected obstacle; this case is covered
by the final transition in Figure 5.6.

Given this definition of the REQ relation high-level behaviors, the definitions of
the sub-behaviors can be constructed in a similar and straightforward manner. For

example, if the robot hits an obstacle, it will attempt to back up, turn, and then

. proceed forward again. This behavior is specified in the Robot_Recover.Action state

variable by having the variable cycle though the values Backward, Turn, and finally

106

Dore.

When refining the specification from REQ to SOFT, we select the sensors and
actuators that will supply the software with information about the environment, that
is, we must select the hardware and define the IN and OUT relations for each platform.

Consequently, we will also need to define the IN’ and OUT’ for each platform.

5.2.3 Process Summary

The structuring techniques above can be applied to virtually any specification lan-
guage. Nevertheless, to realize the full potential of a prototyping-style development
process, it is necessary to allow the analyst to fully evaluate the specification after
each iteration (i.e., perform a risk assessment). Therefore, a language which has a
formal semantics and can be analyzed and executed during each iteration will have
significant benefits over others that do not. This process, called specification-based

prototyping, is discussed in detail in the next section.

5.3 Languages and Tools to Support FORMp(g

The capability to dynamically analyze, or execute, the description of a software sys-
tem early in a project has many advantages: it helps the analyst to evaluate and
address poorly understood aspects of a design, improves communication between the
different parties involved in development, allows empirical evaluation of design alter-
natives, and is one of the more feasible ways of validating a system’s behavior.
Thus, in order to fully realize the benefits from specification-based prototyping
two important criteria must be satisfied. First, one must have a language suitable
for expressing the high-level system requirements and refinement to the detailed soft-
ware requirements. Second, such a language must have a formal semantics and be

supported by tools which allow static analysis and execution. Furthermore, in our

107

work, we discovered that sophisticated execution capabilities (e.g., hardware-in-the-
loop simulation) can have great benefits. These execution capabilities are provided
by an environment that we call NIMBUS (104, 105, 109} that was developed as a
testbed for specification-based prototyping. This section describes these tools and
the rational behind their construction.

Specification-based prototyping combines the advantages of traditional formal
specifications (e.g., preciseness and analyzability) with the advantages of rapid pro-
totyping (e.g., risk management and early end-user involvement). The approach lets
us refine a formal executable model of the system requirements to a detailed model
of the software requirements. Throughout this refinement process, the specification
is used as an early prototype of the proposed software. By using the specification as
the prototype, most of the problems that plague traditional code-based prototyping
disappear. First, the formal specification will always be consistent with the behavior
of the prototype (excluding real-time response) and the specification is, by defini-
tion, updated as the prototype evolves. Second, the risk of evolving the prototype
into a poorly designed production system is largely eliminated. Finally, the dynamic
evaluation of the prototype can be augmented with formal analysis.

When starting to develop NIMBUS, we identified the following fundamental prop-
erties such an environment must possess. First, it must support the execution of the
specification while interacting with accurate models of the components in the sur-
rounding environment, be they RSML™ specifications, numerical simulations, statis-
tical models, or physical hardware. Second, the environment must allow an analyst
to easily modify and interchange the models of the components. Third, as the speci-
fication is being refined to a design and finally production code, there should not be
any large conceptual leaps in the way in which the control software communicates

with the environment.

108

Environment Model A
Q (for closed-loop simulation) [_] l

| | I I
| Text Files/ ! Text OQutput] I
| User Input (fle/screen) 1~ |
! | !
I | :
! RSML= ; { RsMLe |||
| modets Control Software | models |F |
| ! Simulation [|
| - ificati |
| pr— (RSML-® Specification) d Somware ||| |
| simulations | & simulations |
I |
| [I f
| Actual g Actual |
| hardware hardware |

Actuator models at various
levels of abstraction

Sensor models at various

Javels of abstraction Small, standard interfaces allow the

most suitable model (or physical
component) to be used. Model
used is easily changeable.

Figure 5.7 The NIMBUS Environment

In the initial stages of the project, we want the executions to take their input
from simple models, for example, text files or user input. As the specification is
refined, the analyst can add more detailed models of the sensors and actuators, for
example, additional RSML™° specifications or software simulations. In order to have
a closed loop simulation, a model of the environment can be added between the
sensor and actuator models. Finally, when the specification has been refined to the
point of defining the hardware interfaces, the analyst can execute it directly with the
hardware. This hardware-in-the-loop simulation closes the gap between the prototype
and the actual hardware. These ideas are illustrated in Figure 5.7.

In NIMBUS, the interfaces are connected via channels. A channel (in this context)
simply means the way in which data is passed from an interface in one component to
the interface in another component. Before going into the specific details about chan-

nels, it will be helpful to get an overview of the major participants in the environment

109

and how they interact.

Nimbus Manager
- Visualize channels
- Report analysis results
- User control of connactions
Channel Control
Info 4;
Registration il
Other Application - < ko TSG Channel Manager
~
- Hardware-in-the-ioop -~ "W - Performs Analysis
- Component simulations - Connects channeis
- Oft-the-shetf applications
. ,I \\
4
Observer ot yd \
- N
- Observes messages and .:' Messages ,’ Rpgu:fauon
channel traffic Seee. . Registration Info
- Possible statistical analysis | “e.. Info 1
Ses. el)
ey - l
- L
NimbusSim NimbusSim
Mass: .
Several instances of NimbusSim W - Analyze "‘:"““ handiers
can ba loaded simultansously - Execution of state-based
cormponent model

Figure 5.8: The architecture of the NIMBUS environment

Figure 5.8 shows the various components of the NIMBUS environment and gives
examples of how they interact. NIMBUSSim is the simulation and analysis tool for
RSML ™. Multiple instances of NIMBUSSim can run concurrently so that different
specifications can simulate different components of the system. Other applications
can also be added into the environment. Although it is not shown in Figure 5.8,
any application in the NIMBUS environment can exchange messages with any other
application.

The NIMBUS Manager allows the user to dynamically control the connections
between the various components which are registered with the NIMBUS system. Fig-
ure 5.9 shows the main window of the NIMBUS Manager. In the left-hand column,
all the channels currently registered in the system are listed. When the user clicks

on a channel name, the detailed information about that channel is displayed in the

110

area to the right of the channel list.

For each channel, the NIMBUS Manager displays the channel name (in Figure 5.9,
AltitudeChannel), the type (Send-Receive) and three lists (sources, destinations, and
observers). In the lists are the components that interact with that particular channel.
For example, Figure 5.9 shows that Altitude channel currently has two sources and

two destinations. The sources are “MS Excel ASW System” and “Simple MFC Client

Ninhus Manager

Figure 5.9: The main window of the NIMBUS Manager

The check marks beside the component names in Figure 5.9 indicate whether
or not that component is currently active on the channel or not. A component
that is not active cannot participate in the message processing (sending, receiving,
publishing, etc) on that channel. Thus, Figure 5.9 shows that the “MS Excel ASW

System” component is active, whereas the “Simple MFC Client app” is not. Notice

111

in the figure that both “NiMBUSSim (ASW)” and “VB Pilot’s Display” are active
destinations on the AltitudeChannel. The NIMBUS environment allows multicast
communication to allow multiple displays of the data. Also allowed are observers on
a channel (no observers are pictured in Figure 5.9).

The NIMBUS environment does not allow multiple active sources on a channel.
Thus, if the user where to click on the checkbox next to “Simple MFC Client app,”
then it would become the active source on the AltitudeChannel and “MS Excel ASW
System” would become inactive. For convenience, the first registered source and
destination on a channel are made active by default.

The NIMBUS environment allows us to execute and simulate this model using
input data representing the monitored variables and collect output representing the
controlled variables. Input data could come from several sources. The simplest option
for input is, of course, to have the user specify the values (either interactively, or by
putting the values into a text file ahead of time). This scenario is illustrated for the
ASW in Figure 5.10(a). Unfortunately, it is often difficult to create appropriate input
values since the physical characteristics of the environment enforce constraints and
interrelationships over the monitored variables. Thus, to create a valid (i.e., physically
realistic) input sequence, the analyst must have a model of the environment. Initially,
this model may be an informal mental model of how the environment operates. Asthe
evaluation process progresses, however, a more detailed model is most likely needed.
Therefore, in this stage of the modeling we may develop a simulation of the physical
environment. The NIMBUS architecture lets us easily replace the inputs read from
text files with a software simulation emulating the environment. This refinement can
be done without any modifications to the REQ model.

NIMBUS allows the user to visualize the system in many ways. The visualizations

constructed using powerful user interface construction tools, for example, Visual Basic

112

Text file with RSML model of Text file collecting
. — . ——
altitude data Altitude the REQ relation DOI_Command DOI commands

Excel spreadsheet

b. generating —————————P

altitude data Altitude

RSML model of
. —»1 Excel spreadsheet
the REQrelation | poy command

Figure 5.10: The REQ relation can be evaluated using text files or user input (a) or

interacting with a simulation of the environment (b).

and can utilize the many third party ActiveX controls that are on the market. This
makes it possible to construct rich visualizations, without expending large amounts
of money. Thus, more development dollars can be used to ensure the quality of the
specification.

When evaluating RSML™° specifications in NIMBUS, the analyst has great freedom
in how he or she models the environment. When we evaluated the REQ model,
we used text files or a software simulation of the physical process to provide the
RSML™° model with monitored variables and to evaluate the controlled variables.
As the IN’ and OUT"’ relations are added to the RSML ™ model, the data provided
(and consumed) by the model of the environment must also be refined to reflect
the software inputs and outputs (INPUT and OUTPUT) instead of the monitored
and controlled variables. This can be achieved in two ways; (1) refine the model of
the physical process to produce INPUT and consume OUTPUT, or (2) add explicit
models of the sensors and actuators to the simulation. In reality, the refinement
of the environmental model and the SOFT relation progress in parallel and is an
iterative process. The sensor and actuator models may be added one at a time and
the interaction with different components may merit different refinement strategies.

NIMBUS naturally allows any combination of the approaches mentioned above to be

113

used.

As the refinement of the SOFT relation and the models of the environment pro-
gresses, we may at some point desire to perform hardware-in-the-loop simulation.
This not only provides a powerful evaluation of the proposed software system, we
can also use NIMBUS to evaluate the physical system itself. For instance, by forcing
the RSML™¢ model of the software requirements into unexpected and/or hazardous

states, we can inject simulated software failures into the hardware system.

5.3.1 Simulations of the ASW

For the ASW, we created a spreadsheet in Microsoft Excel to emulate the behavior
of the aircraft (Recall Figure 5.10(b)). The graphical interface for the Excel model
is shown in Figure 5.11. This simple environmental model allows us to interactively
modify the ascent and descent rates of the aircraft, and easily explore many possible
scenarios.

Figure 5.12 shows a mockup of a portion of the Pilot’s Display that we developed
to show this concept. Mockups like this, which are available while REQ is being
developed, could be used to evaluate the potential operator interface early in the
development life cycle. This can allow the specifiers to catch many errors early
and also evaluate the REQ relation for, e.g., potential mode confusion. In fact, the
Rockwell Advanced Technology Center has been very successful at developing high-
fidelity mockups of their control panels and displays for the Flight Guidance System
and using them to explore operator issues such as mode confusion.

In the case of the Altitude Switch, to simulate the refined SOFT relation we
modified our Excel model of the physical environment to produce digital and analog
altitude measures (Figure 5.13(a)). The refinement was achieved by simply making

Excel provide the three altitudes and applying the two transfer functions defined

114

pidi rafors, we're not lvying 1o edd noise'or'
L o the data befors s sent out. " This could be addad by inseting an additional
’prudshnt betwesn this one and ihl SpocTRM-RL spucification.

Figure 5.11: The ASW Excel REQ environment

115

sk £ Ehapbay

Figure 5.12: A mockup of the Pilot’s display for the REQ model

earlier before the output was sent to the RSML™° model. Adding measurement errors
to the sensor models can further refine the simulation of the ASW. For instance, by

modifying the computation of the digital altimeter outputs to

Altitude
8192

where ¢ is some normally distributed random error (easily modeled using standard

Digital Alt =

functions in Excel), we can provide a more realistic simulation that includes the
natural noise in the data from the altimeters.

As an alternative to refining the Excel model to include the altimeter models, we
can explicitly add altimeter models to the simulation (Figure 5.13(b)). In our case,
we added altimeter models expressed in RSML™®. By adding explicit models of the
sensors and actuators, we can easily explore how the software controller reacts to
simulated sensor and actuator failures. Note that the integration of various different
models with the RSML™¢ simulation of the control software does not require any
modifications of the RSML™® model, the channel architecture of NIMBUS allows the

analyst to easily interchange the component models comprising the environment.

Excel spreadsheet
generating
a. altitude data and
simulating the

DigitalAlt-1
" DigitalAli-2

altimeters j AnalogAl:

RSML model of the

|

| S— -

SOFT relation J DOI_Comman ‘

|
Excel spreadsheet

116

"RSML model |
of digital J
altimeter 1 | 9.
¥ L ey,
"Excel spreadsheet | » RSML model ; I -
b. | “Ze.smnsg“ S ofdi:ilt:le g RSMLmodelof = | Excel
_ altitude data " ;nAlm“de _ altimeter2 D'glmAh: tth?firehtlon J DOI_Command ‘ spreadsheet
«1 . e A e S
% [RSMLmodel | &
A analog ;
altimeter |

Figure 5.13: Refined models of the environment; (a) using Excel to simulate the

physical process as well as the sensors and (b) using Excel to simulate the physical

process and RSML™° models to model the sensors.

117

Front Sonars
1 RSML* Model of the
H . " H H Sensor Values
a. Side Sonars Pioneer on-board OS ,\b Saphira Client P or Valu SOFT Relation
Radio Modem Actuator
P i

Link

g

Infrared Range
Sensor

"

RSML* Model of the

Sensor Values o
DAQ Card Pl SOFT Relation

Motors

!ﬁ

Actuator
Ce

Bump Sensors

Figure 5.14: Summary of the hardware-in-the-loop simulations performed with the

mobile robotics platforms

5.3.2 Simulations of the Mobile Robotics

Figure 5.14 shows the configuration that we used for the hardware-in-the-loop sim-
ulations of the mobile robots. The Pioneer is shown in part a. of the figure and the
Lego-bot is shown in part b. The Pioneer has a high-level interface called Saphira.
The Pioneer has a small CPU on board which manages the actual hardware. The
sensor input and actuator commands are managed by the Pioneer OS which runs on
the Pioneer’s CPU. Part of the Pioneer OS manages the communication over the ra-
dio modem. On the other end of the radio modem, Saphira translates the inputs from
the Pioneer OS into values the can be accessed by the user using Saphira function
calls.

In the case of the Pioneer, there is quite a bit of software between the RSML™°
simulation and the actual hardware. This situation is common in real world situations
since there probably already exists driver software for the hardware that you wish to
control. It is natural to use this existing software rather than encode all the details

in the specification.

118

NiMBUS also allows the analyst to bypass any software drivers and model all as-
pects of the control in RSML™®. In the case of the lego-bot, the RSML ™ specification
gives low-level direction to the data acquisition (DAQ) card. The card then supplies
the voltages to run the Lego-bot through a tether cable. Some aspects of the Lego-
bots behavior had to be manually calibrated. For example, it is difficult to predict
in advance how fast the robot will move given a particular voltage supplied to the
motors. This depends on the strength of the motors and the gearing of the wheels.
Instead of trying to calculate speeds using the gear sizes, etc., we calibrated the IN
and IN’ relations based on experimentation.

In the mobile robotics domain, it is virtually impossible to develop a realistic
simulation of the robot and its environment. The ability of NIMBUS to do hardware-
in-the-loop simulation allows us to extend our formal modeling approaches to systems
where experimentation is an integral part of the development process, for example,

mobile robotics.

5.4 Summary

In this chapter, we have illustrated the FORM pcs system model as well as the process
framework of specification-based prototyping. We have also illustrated this process
on the ASW and Mobile Robotics examples, including how these two examples can
be simulated in the NIMBUS environment. This chapter provides a basis for under-
standing the FORMpcs methodology. Even so, there are a number of questions that
remain open. First, how do we arrive at the REQ relation? How is the REQ relation
structured and how can we find the monitored and controlled variables? And, how
can all of this be tied to the product family work that was discussed in Chapter 4.
These questions are all addressed in the methodology itself, which is the topic of the
next Chapter.

Chapter 6
Methodology Overview

This chapter gives a high-level overview our Family Oriented Requirements Method
for Process Control Systems (FORMpcs) concentrating on the original contributions
of the dissertation. The methodology builds on both the preceding chapter and
Chapter 4 to present an integrated view of the overall process from high-level product
family requirements to a detailed specification of the SOFT relation. This process
and the activities in each phase also borrow from related work, especially CoRE [99]
and work done by Steve Miller [83, 82]. In this chapter, we will hightlight the original
components of the methodology while giving a broad overview of the process and
activities.

We begin by discussing FORMpcs in an idealized setting where the specifier
always has all the information necessary to make correct decisions at each stage of
the process. Often, however, this is not the case [91]. Thus, the idealized process
is not necessarily a realistic one. The iteration that one would expect to find in the
methodology is found in the section after the idealized process. Finally, we end this
chapter with a section on what languages are suitable for use with FORMpcs and

what the various tradeoffs between those languages might be.

119

120

6.1 FORMpcs Process Phases

This section describes the idealized FORMpcs process phases. Each subsection be-
low describes a phase of the methodology, beginning with the commonality analysis
and ending with the specification related to the sensors and actuators in the final,
physical system. Along the way, FORMpcs guides practitioners in defining envi-
ronmental quantities and operator set points, developing an overall structure for the
requirements and then developing a draft specification, refining the draft specification
(adding, for example, error handling and fault recovery behaviors), and finally adding

details about the sensors and actuators.

6.1.1 Commonality Analysis

The commonality analysis, the first phase of the methodology, begins with a short
(i.e., one to 5 paragraphs) high-level description of the intended family. This de-
scription is then refined until the analyst can begin to identify the commonalities,
Le., those features which are present in all family members, and the variabilities, i.e,
those features which vary across members of the family. This initial set of common-
alities and variabilities forms the basis for the rest of the process.

As we discussed in Chapter 4, we allow a family to be broken down along different
dimensions, for example, a hardware dimension and a behavioral dimension. In addi-
tion, we allow a family to be broken into several sub-families, for example, a general
family of flying craft might be broken down into fixed-wing aircraft and helicopters.
This family-level structuring occurs as a result of discovering additional commonali-
ties and variabilities during the commonality analysis. Finally, we will examine the
commonalities and variabilities in terms of whether they apply to the REQ relation

or whether they apply to the IN’ or QOUT"’ relations.

121

Define the Top-Level Family: The first activity of FORMpcs is to defining the
top-level family which will form the basis for the specification(s) developed in the
later phases. This important activity ends when a short description of the family
has been generated. We gave the high-level description the Altitude Switch family in

Chapter 4 and it is reproduced below for reference:

The ASW family consists of systems on board the aircraft that utilize
the values from the various altimeters on board to make a choice among
various options for actions (one of which being to do nothing) and perform

the chosen action.

From this high-level description, the initial commonalities and variabilities may

be stated.

Initial Commonalities and Variabilities: The initial commonalities and vari-
abilities are found by examining the system description and the high-level description
that was written in the previous activity. Much has been written about elicitation
and recording of the commonalities and variabilities for a product family (117,12, 53]
and FORM pcs includes some guidelines as well as pointers to these references.
FORM pcs advocates a slightly modified approach starting with high-level com-
monalities and variabilities and working towards a more refined description of the
family. The highest level commonalities define the boundaries of the broadest pos-
sible product family. As more commonalities are added, the definition of the family
becomes more refined. We assert that it is useful to preserve which commonalities
define the outermost scope of the family — these are the least likely to change in the
future and, thus, should depend on the essential purpose of the system, i.e., the most

basic reasons for the system'’s existence.

122

In addition, because FORMpcs deals with process-control systems in particular,
we needed to provide a connection between the commonalities and variabilities and
the REQ, IN’, OUT" relations. Therefore, we advocate noting which relation a com-
monality or variability applies to and partitioning the commonalities and variabilities
based on that information. This separation is useful because we can then first concen-
trate first on the REQ relation and before moving on to the IN’ and QUT’ relations
(as outlined in Chapter 5).

In Chapter 4 a number of the initial commonalities for the ASW were listed. The
ASW was first defined as a broad family, allowing for all possible members of the

ASW. These high-level commonalities and variabilities are listed again for reference.

Cl All ASW systems will have a method of measuring the altitude of the aircraft

C1.1 The ASW system will use the information about the aircraft’s altitude to

make a decision as to what action the ASW system shall perform

V1 The actions that the ASW takes in response to the altitude and the criteria to

perform those actions varies from aircraft to aircraft

Then, we added more commonalities and variabilities that further defined the
scope and purpose of the product family. We will not duplicate all the commonalities
and variabilities here, but we will mention the following is an example of the original

text of [V4.

V4 The period of time that the altitude must be invalid before the ASW will declare

a failure may vary.

Note that this is an earlier, less refined version of [V4 | than what was presented
in Chapter 4; the refined version is presented below under the elaboration of the

commonalities and variabilities.

123

Identify Family Structure: Even for a family as small and simple as the ASW, we
can identify elements of structure in the family. This identification is useful because
it helps us to understand the family and it is invaluable if, in the future, we would
like to re-factor the family or incorporate the family as a part of a larger family. For
example, we might like to have one family that encompasses all the avionics devices
(not just the ASW). The techniques for representing the family structure that were
developed as a part of this research were discussed in Chapter 4 and this activity of
the methodology presents these techniques in a form suitable for practitioners.

One of the contributions of this activity is a greater explaining of how to identify
sub-families. We believe that a good clue to the existence of a sub-family is common-
alities that start with the word “if,” for example, in the case of the ASW we could
have written all the DOI commonalities as “If the action to be performed is turning
on or off a DOIL, then ...” This activity also involves the visualization of the family
structure as was discussed in Chapter 4

In Chapter 4 we presented several visualizations of the structure of the ASW

family (Figures 4.8 and 4.9).

Elaborate Variabilities and Commonalities: In the next activity in developing
the family description, the commonalities and (especially) the variabilities are refined
so that they contain actual quantities, or choices for the variations. This activity is
a precursor to developing the product family decision model (next), as well as later
when the tolerances and bounds of variables in the specification must be given.
When [V4 | was first defined, we did not specify the tolerances on the period
of time that the ASW shall wait before declaring a failure. As we progressed in the
definition of the ASW family, that information was added so that variability four

appears as it was printed in Chapter 4.

124

V4 The period of time that the altitude must be invalid before the ASW will declare
a failure may vary between 2 seconds and 10 seconds from family member to

family member.

Define the Decision Model: The decision model represents a recording of which
choices for all the possible variabilities result in valid family members. Obviously, the
more complex the structure of the family, the more complex the decision model will
be.

Building the decision model can often help to identify commonalities or variabil-
ities that may have been forgotten in the initial draft of the family requirements.
This is because engineers, familiar with the products, may recall items that must be
specified about a particular family members that they did not recall when attempting
to generalize to all family members.

One way that the decision model may be written down is by simply noting which
choices are made for each family member. However, the most common technique
in the literature is a simple tabular representation similar to what was given for
the ASW in Chapter 4 and is reproduced in Figure 6.1. In a family with a more
complex structure, a hierarchical series of tables might be used with one table for

each sub-family.

At the end of the commonality analysis, the requirements document will contain a
description of the family including all the sub-families and dimensions involved; and,
the analyst will have identified a subset of the commonalities and variabilities that

he/she will use to specify the REQ relation in the next stages.

125

Variability CS-123 CS-134 DD-123 DD-134 EF-155
of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3
Threshold Algo. Any Any Any Majority Majority
Invalid Alt. Failure 4s 2s 2s 2s 2s
Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off
Go Below Action Turn On Turn On Turn On Turn On Turn On
Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft
Go Below Hyst. NA NA NA NA 200 ft
DOI timeout 2s 2s 2s 2s 2s

Figure 6.1: A tabular representation of the ASW family decision model

6.1.2 Environmental Variables

In the environmental variables phase, the goal is to identify quantities in the environ-
ment that are important to the specification. Earlier, we discussed several models of
viewing the system’s interaction with the environment. Many environmental quan-
tities are mentioned in the commonalities and variabilities that were created in the
previous phase. This phase of the methodology provides concrete guidance on how to
choose monitored and controlled quantities. In addition, this section will demonstrate

the characteristics of the various types of environmental variables.

Identifying Controlled Variables: The focus of this activity is to identify the
quantities that are under the system’s control. We categorize the controlled variables

into several classifications:

126

e Environmental Quantities: These are variables in the environment that
system changes in order to achieve the requirements. These should not be tied
to any particular actuators, but should represent in general the effects that the

system may introduce in the environment.

e User Displays: These are variables that need to be displayed to the user. This
type of controlled variables often represent indicator lights, gauges, etc. that are
present in the physical system. Their purpose is to help the operator develop a
mental model about the state of the system being controlled; thus, indications

of the state of the controller are also often included.

® Values for Another Subsystem: These are variables that go to another
subsystem. This type of controlled variables is common when specifying one
piece out of a system or subsystem and there are certain details that must be

abstracted away.

This classification scheme is unique to FORMpcs and provides more guidance in
this area than what is currently available in either CoRE [99] or REVEAL [94].

In the ASW, one controlled variable is the DOI status, which we know from
[Cporl] is changed by the ASW. As it happens, the DOI is an interesting case,
because the state of the DOI is both controlled and monitored by the ASW. This
is because other systems on the aircraft can turn the DOI on and off. In terms of
our categories of controlled variables, the DOI fits best as an environmental variable
because the DOl is a device that will exist on the aircraft presumably whether or not
the ASW is on board.

Another controlled variable is the failure indication of the ASW. The ASW is
required to supply an indication of whether or not it is operating correctly [C3].

Therefor, a controlled variable is required to support this indication. In terms of

127

the categories, failure indication fits best as a user display, but could also be viewed
as a subsystem interface because it may be used by other components on board the

aircraft.

Identifying Monitored Variables: This activity compliments the identification
of controlled variables by identifying the monitored variables. Monitored quantities,
similar to controlled quantities, are broken down into several different types that help

in identifying them.

¢ Environmental Quantities: Variables or conditions that exist in the envi-
ronment, are observable, and can be used to compute the values of controlled

variables.

e User set-points: Variables that are specified by the user (operator) of the
system. These variables change the way that the controlled quantities are com-

puted.

e Abstracted quantities: Variables that are received from another subsystem
that are introduced because the specifier desires to concentrate on the current

subsystem.

e Quality Indications: These are variables which indicate the quality or ability
to observe of other monitored variables. These variables are often Boolean, for

example, indicating that the altitude can or cannot be observed.

Certainly, the most obvious monitored quantity in the ASW is that of the Altitude.
This is clearly an environmental quantity, because the aircraft will have some altitude
whether or not the ASW is present. In addition, we know that eventually we will

have some kind of sensors in the system that actually measure the altitude.

128

Because it is always possible for sensors to fail, it is possible that there will times
when the altitude will not be measurable. Therefor, we require a quality indication

for the Altitude, the Altitude_Quality variable.

Define the Variables: The monitored and controlled variables represent the in-
terface of the system requirements, the REQ relation, to the environment. It is
important to capture the essential information about each variable. In this activity,
FORMpcg provides a template for defining the monitored and controlled variables
based on [99] and also in [52].

In accordance with the guidelines in CoRE, we advocate that for controlled vari-
ables a short description of the conditions under which the variable can take on its
various values is given. This activity helps in later stages as the informal description
of each controlled variable is refined into a formal description of the REQ relation
(and later the SOFT relation). In addition, as the conditions under which each vari-
able takes on its various values are defined, often previously overlooked errors can be
found.

An example of an initial controlled variable definition is shown in Figure 6.2.

Define Relationships Among Variables: In this activity, the relationships be-
tween the monitored and controlled variables that exist as part of the environment
(and in the absence of the proposed system) are noted. Thus, in this activity we are
encoding the NAT relation.

Jackson et al. provides good references on expression the system context and
the NAT relation, some of which is duplicated in FORMpcs [49, 47, 50, 51, 48, 32].
The primary method of visualizing the system’s interaction with its environment is a
context diagram.

A system context diagram is a picture that shows each input and output to the

129

_[STATE VARIABLE|

CON_DOI_P2

Parent: NONE

Possible Values: On, Off, Uncommanded

Initial Value: UNDEFINED

Classified as: Controlled

Purpose: This variable represents the ASW’s commanded status of the Device of

Interest (DOI).

Interpretation:

On: Indicates that the DOI is commanded to be On. The DOI is com-
manded to be on when the aircraft enters the target region for turning
the DOI on, the DOI is not already on, and the ASW is not inhibited.

Off: Indicates that the DOI is commanded to be Off. The DOI is com-
manded to be off when the aircraft leaves the target region and after
a certain period of time has passed. If this time is UNDEFINED, then
the ASW will never turn the DOI Off.

Uncommanded: Indicates that the DOI is not commanded by the ASW.
This CON_DOI variable will be equal to Uncommanded in any step
were the ASW does not issue a command to the device of interest.

Issues:

e If the aircraft leaves the target area and the DOI is on, but was not commanded
to be on by the ASW, should the ASW turn it off?

Figure 6.2: The CON_DOI variable in Phase 2 of the methodology

130

DOl

MON_DOI CON_DOI

CON_Failure

MON_Altitude Aircraft

MON_Reset MON_inhibit

————— 1 Operator

Figure 6.3: The System Context Diagram for the ASW in this Phase

system. The key in capturing the NAT relation is to begin to think about how the
rectangular boxes (i.e, the monitored and controlled variable sources) interact with
one another in the environment. An example system context diagram for the ASW

is shown in Figure 6.3.

At the end of this phase, the specification will have a list of all the monitored and
controlled variables used in the system cataloged according to their type. This will
form the boundaries of the REQ relation. Furthermore, there will also be a statement
of the NAT relation, i.e., a statement of the constraints that are imposed upon the

environmental variables in the absence of the proposed system(s).

6.1.3 Initial Structure

In the initial structure phase, the environmental variable descriptions developed in
the previous phase along with the product family structure identified in the first

phase are used to develop an initial structure of the REQ relation. In languages

131

that support a module construct, specification entities may be grouped together into
pieces that can be reused across the product family. In languages that do not support
a module construct, specification pieces can be formed by textual delimitation (e.g.,
using comments) and physical grouping. Component reuse can then be accomplished
by cut-and-paste.

In this and later sections, we have use the modularized version of RSML™° pro-
posed in the next chapter; thus, Chapters 6 and 7 are dependent upon one another.
Because this chapter provides the motivation for the addition of the modules, we
have chosen to present the methodology overview first. All that is really necessary to
understand the examples here is that a module consists of a number of state variables
that are imported, a number that are exported, and a number that are encapsulated

(hidden).

Define Dependency Relationships: In this activity, the monitored variables and
modes are necessary for the computation of each controlled variable are identified.
The goal of this activity is not to produce a detailed dependency graph. Rather, the
goal is to formulate a solid idea of the order in which entities in the system must be
computed so that there are no circular dependencies between the various variables.
The first step is to make a list in each controlled variable definition of which other
controlled variables, monitored variables, and mode machines it depends upon. Then
it is possible to examine each variable and attempt to identify circular dependencies.
We advocate viewing a large specification as a series of functional blocks. The
different blocks can then be drilled down into in a functional-decomposition type
style. This helps to sequence the computation in broad strokes, and then it is easier
to avoid circular dependencies within the block. Nevertheless, circular dependencies

can be difficult to see, which is why a tool supported language can be invaluable.

132

Define Modules and Interfaces: In this activity, the dependency relationships
created previously are used to start to group pieces of the computation together to
form modules.

Parnas [88] defined a criteria to be used in decomposing a system into modules
called information hiding. Using this philosophy, every module in the system should
be chosen so as to encapsulate a decision or several decisions about the system,
for example, a module may encapsulate a variability or group of variabilities. The
interface of such a module exposes only the essential information that the rest of
the specification requires. It has been suggested in CoRE [99] that a method for
determining which decisions should be grouped together should be whether they are
expected to change together. Still another way to view a module is as an addition to
the vocabulary that is used to express the requirements. This is the reasoning that
lies behind the standard modules used in functional declaration style in RSML ™. A
module may allow the specifier to map a construct in the physical domain to a single
construct in the specification.

One building block that is useful for the ASW is a module that exports the
thresholded altitude taking into consideration the hysteresis factor that is required.

The interface for this module is defined in Figure 6.4.

The outcome of the this phase phase will be that the REQ relation is divided
into a series of manageable pieces each of which will be specified in detail in the next

phase of the methodology.

6.1.4 Draft Specification

In this phase, a preliminary behavioral specification of the system requirements is
developed by refining the module definitions developed in the previous stage into

working pieces of the specification. This first version of the specification will deal

MODULE ThresholdedAltitude _P3 :

INTERFACE :

IMPORT Altitude_P3
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

: Integer

IMPORT CONSTANT Threshold P3 :

UNITS : ft

EXPECTED_MIN : O

EXPECTED_MAX : 8024
END IMPORT

IMPORT CONSTANT Hysteresis P3 :

UNITS : ft

EXPECTED_MIN : 50O

EXPECTED_MAX : 500
END IMPORT

IMPORT CONSTANT Direction_P3

Purpose

Integer

Integer

: UpDownType

: &*L This parameter tells the thresholding algorithm

which direction we are interested in applying the hysteresis

to. If the direction is specified as Down, then we will have to
go above threshold altitude by the hysteresis amount before we
can declare that we are above (and, thus, be allowed to declare

below again). L*&
END IMPORT
EXPORT AboveOrBelow

Purpose

: AboveBelowType

: &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L&

END EXPORT

END INTERFACE

DEFINITION
END DEFINITION

END MODULE

Figure 6.4: The ThresholdedAltitude Interface in Phase 3

133

134

EXPORT CON_Failure_P4
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE

DURATION (AttemptingOn() , O S, Clock) > DOI_Timeout_P4 : T * % % ;
DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 * T * * ;
DURATION(MON_Altitude_Q uality_P4 = Invalid, 0 S, Clock) * x T x ;
PRE(CON_Failure_P4) = False * x x T ;

END TABLE

EQUALS FALSE IF

TABLE
DURATION (AttemptingOn() , 0 S, Clock) > DOI_Timeout_P4 : F
DURATION (AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 : F,;
DURATION(MON_Altitude_Q uality_P4 = Invalid, 0 S, Clock) : F
PRE(CON_Failure_P4) = False : F

END TABLE

END EXPORT

Figure 6.5: The CON_Failure variable in Phase 4 of FORMpcg

primarily with the intended, normal case behavior. While failure modes and fault
tolerance must be kept in mind, these characteristics will be added to the specification

in later stages.

Specify Each Controlled Variable: In this activity, how each controlled variable
assumes its various values is specified. This activity involves not only thinking about
what values are necessary to compute the controlled variables, but exactly how those
variables contribute to the controlled values. Much of the information on specifying
controlled variables was adapted from CoRE; however, we have added a distinction
between two styles of specification: equivalence-style and transitional-style.
Equivalence-style specification of a state variable is, perhaps, the most straight-

forward. In this style, the specifier states explicitly in a series of cases what value

135

the state variable assumes. The value of the variable is, thus, always defined unless
explicitly noted otherwise by the specifier or unless it is a child underneath another
state variable. An example of an equivalence-style specification for the Failure state
variable is shown in Figure 6.5.

For any computation of the specification, it is expected that one and only one
case of the variable will be true; the state variable then assumes the value specified
by the one unique case. If the state variable does not have a case which evaluates to
true in some step, then we say that the variable definition is incomplete because for
the particular sequence of inputs events leading up to this step the variable does not
have a defined value. If the state variable has more than one case which is true then
we say that the specification is inconsistent; how can we know which case is the one
that was intended by the specifier?

On the other hand, sometimes we are not so interested in what values a variable
should have in each step but, rather, it is desirable to specify when the variable should
change values. A transitional-style specification consists of a series of transitions, each
with a source state, a destination state, and a condition. When the condition is true
and the variable has the value specified by the source state, then the variable will
become the value specified by the destination state.

Transitional-style specifications have the same notion of consistency as equivalence-
style specifications. In contrast, a transitional-style specification is usually expected
to retain its current value in the absence of any need to change. Therefore, transitional-
style specifications often do not make use of the notion of completeness because it is
expected that there will be some steps (probably many steps) in which the none of the
transitions may be taken. A transitional-style specification may be made complete
by adding transitions from a state back to itself that cover the conditions underwhich

the state variable shall retain that particular value. An example of a transitional-style

136

EXPORT CON_DOI_P4
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE
DOI_Action_0k(On)
WHEN (ThresholdedAlt_P4. Result_P4
GoBelowAction = TurnOn
WHEN (ThresholdedAlt_P4. Result_P4
GoAboveAction = TurnOn

END TABLE

Below, False)

Above, False)

* % -1 31
-~ o® *]

TRANSITION Uncommanded TO 0ff IF

TABLE
DOI_Action_Ok(Off)
WHEN (ThresholdedAlt_P4. Result_P4 = Below, False)
GoBelowAction = TurnOff
WHEN (ThresholdedAlt_P4. Result_P4
GoAboveAction = TurnOff

END TABLE

Above, False)

* ¥ 334
-3 % %

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)
TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P4 = Off, False)

END EXPORT

Figure 6.6: The CON_DOI variable in Phase 4

137

specification is shown in Figure 6.6.

Identify Potential Modes: In general, modes of the system are points of discon-
tinuity in the functions of the controlled variables. For example, a controlled variable
might depend on a specific series of user inputs and events before it can take on a
particular value; thus, we will require a mode machine of some kind which will record
for us where in the sequence of actions we are and what input we expect to occur
next.

A concrete example is that of a weapons firing interlock. It is usually true that a
number of conditions must become true before pressing the ‘fire’ button will cause the
weapon to fire, for example, perhaps the airplane must be traveling at a particular
speed, or at least a certain altitude. Furthermore, it is usually not desirable to have
the depression of the firing button precede these events: what if the firing button is
stuck down and we cross a threshold altitude which makes the preconditions true?
We probably do not want to fire in that case. To model this type of behavior, the
specification must store internal state information so that it can track where in the
sequence it is.

Modes partition the functionality of the system. When a mode variable has one
value, the system behaves in one way and when the mode has a different value, the
system behaves in a different way. The above example of a sequence of values is not the
only time when this occurs. Modes may represent some alternate or reduced operation
of the system. For example, many systems have a startup or shutdown mode in
addition to the normal operation mode. Another example is when a system has some
reduced functionality modes; for example, when the values of some environmental
quantities are not available, the system may only be allowed to perform a subset of
the available actions.

Finally, modes may be introduced to represent to the environment or controller

138

what the system is doing. For example, in an aircraft, the various systems can be on
autopilot, or in landing or take-off modes. If the system being built is responsible for
implementing one or more of these modes, then it will be useful to represent them
explicitly in the requirements because they are the language in which the customer will
be most comfortable to communicate. In addition, it be common to state properties
about these modes, for example, “the system shall not raise the landing gear while
in landing mode.”

There are a number of examples of variables which might be considered modes in
the ASW specification. One example is ASW_System_Mode variable. This variable
controls the overall functioning of the ASW. In phase four, the ASW _System_Mode
variable has only two values: Operating and Rest. Nevertheless, this same structure
could be used to represent a startup and shutdown mode, or it could be used to
represent different modes of reduced functionality simply by adding values to the
ASW _System_Mode variable and then defining appropriate behavior for those modes.
Using the module construct (or cut and paste) it is possible to allow modes to share

functionality while still differing significantly in some areas.

Use Tools to Visualize the Preliminary Behavioral Specification: Many
formal languages are supported by tools, including RSML™¢, which is supported by

the NIMBUS tools. Simulation of the specification was discussed in Chapter 5.

The outcome of the draft specification is a document which can be reviewed so
that all interested parties can agree on the essential behavior of the REQ relation
without getting bogged down in details about particular sensors and actuators, or
about complex failure modes and error handling. Using RSML™° with the NIMBUS
environment, it is possible to simulate the high-level behavior at this point; therefore,

everyone involved on the specification effort can get a good idea of the behavior that

139

was specified.

6.1.5 Detailed Requirements

When producing the Detailed Requirements, the analyst will begin to add to the
REQ relation all things that were initially left out of the preliminary behavioral spec-
ification. In this phase, we will consider the fault tolerance of the specification, error
conditions which may arise due to the fact that we are using sensors and actuators,
and so forth. Also, hear is where we need to consider in more detail the startup and
shutdown behavior of the system.

As these new behaviors are added, we may find it necessary to revisit decisions
which were made about the preliminary specification as well as about the requirements
structure. Thus, it is natural to iterate between these phases.

At this point, the analysts should begin to think about completeness and consis-
tency of the REQ specification. Therefore, if analysis tools are available, the REQ
specification should be run through these tools and any errors which are found should

be corrected.

Specify Initialization and Shutdown Activities: Most controllers have (or
should have) a different operational profile immediately after they are turned on
and just before they are about to turn off. The reason for this is that the environ-
ment in which the controller operates is a system of its own right; it exists with or
without the presence or operation of the controller. Certainly, there are two different
systems: one with the controller turned on and one with the controller turned off.
And, these systems behave differently from one another.

The ASW’s startup mode is very simple: it just has to receive five seconds of

valid altitude in order to transfer to normal operation. Thus, it can be represented

140

EXPORT CON_Failure_P5 :
PARENT : NONE
DEFAULT_VALUE : False

TRANSITION False TO True IF
TABLE
ASW_System_Mode _P5 = NormalOperating
ASW_Operating_Mode_P5.C ON_Failure_P5
ASW_System_Mode_P5 = Degraded
ASW_Operating Mode_P5.C ON_Failure_P5
END TABLE

* ¥ =]
-1 3 x »

TRANSITION True TO False IF ASW_System_Mode_P5 = Reset

END EXPORT

Figure 6.7: The CON _Failure variable in Phase Five

with only a single transition and does not need other behavior. In other systems, the
controller may need to wait until it develops a certain confidence in the estimates of

the monitored quantities before it issues any commands to the environment.

Specify Error Handling: The first thing to do in specifying the error handling
behavior of the specification is to create a list of potential error conditions. Note
that all of the possible error conditions may not be known at this time; some error
conditions may only come to light when information about the sensors and actuators
is added. Nevertheless, many possible error conditions will be known during our
development of the REQ relation and those error conditions should be handled.

A useful technique is to have a global failure mode that encapsulates the failure
mode of the system. High-level failure conditions cause this mode to transition be-
tween its various values (i.e., “Ok” and “Failed”). The global failure mode can then
be supported by having each module below the main module also export a failure

indication that covers failures local to that module. Then, the global failure mode

141

checks each of these local failure indications and, if they are true, may decide declare
a failure or to enter some reduced functionality mode as is described in the next
activity. This technique of structuring the failure mode computation is unique to

FORMpcs. The ASW’s global failure mode is shown in Figure 6.7.

Degraded Modes of Functionality: Often, we wish to have a system which has
some behavior under ideal conditions, i.e., good knowledge about the environment,
but which will continue to function in a safe manner event if conditions are not
ideal (for example, with failed sensors or actuators). It is possible to plan ahead and
establish several different modes of functionality ranging from fully operational where
all information is known to an acceptable confidence to a shutting down mode where
the system will turn itself off and leave the process in a safe state.

This sort of system is difficult to construct because, in a sense, many different
systems are being specified — one for each degraded functionality mode. Nevertheless,
it may be that the system behavior is more or less the same in these various modes.
In that case, the modes may be able to be treated as a family of sorts. This view
of degraded modes of functionality as a family and the structuring of them was first

introduced in FORMpcs.

The various modes of the ASW and how the ASW switches between them are
shown below. We have simply added additional states to the undeveloped ASW -
System_Mode from the previous phase. In Figure 6.8, we have added an overall
failure mode to deal with system failures and also a value for the started and degraded
functionality modes.

In order to enter the degraded functionality mode, we must know whether two
episodes of invalid altitude lasting at least one second have occurred within one
minute of each other. This requires state information, so we have introduced the

EpisodeMonitor_P5 variable to track the occurrence of episodes and inform the ASW _-

142

STATE_VARIABLE ASW_Syst em_Mode_P5
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. Lx*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_PS

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor PS5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality_P5 = Valid, 0 S, Clock) > 1 M

TRANSITION Reset TO NormalOperating IF
DURATION(PRE(ASW_System _Mode_P5), 0 s, Clock) >= 0 §

END STATE_VARIABLE

Figure 6.8: The ASW _System_Mode variable in Phase 5

143

STATE_VARIABLE EpisodeMonitor_P5
VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}
PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functionality
mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within 1 minute. L#*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF
DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > 1 8

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION (MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > 185 : T
DURATION (PRE(EpisodeMon itor_P5) = FirstEpisode) > 1 S : T ;

END TRANSITION

TRANSITION FirstEpisode TO NoEpisode IF
DURATION(PRE(EpisodeMon itor_P5) = FirstEpisode) >= 1 M

TRANSITION QualifyingEpisode TO NoEpisode IF
DURATION(MON_Altitude_Q uality_P5 = Valid, 0 §, Clock) >= 2 M

END STATE_VARIABLE

Figure 6.9: The EpisodeMonitor variable in Phase 5

144

System_Mode variable when a qualifying episode as occurred and it is necessary to

enter degraded functionality mode. This is shown in figure 6.9.

Specify Tolerances and Handle Violations: In the ideal world of the REQ
specification, the value of each controlled variable is known with exact precision.
Nevertheless, we know that eventually a physical implementation of the system will
be built and that in that implementation we cannot know the values for certain or to
an infinite accuracy.

In many cases, the tolerance of a controlled variable is constant throughout the
entire specification. In that case, the tolerance may be specified in much the same way
as the precision was specified for monitored variables. In other cases, the tolerance
of a controlled variable may be a function of one or more modes of the system. In

the methodology, we give several examples of when this can be the case.

The outcome of this phase is a completed specification of REQ. This specification
can then be analyzed using whatever formal analysis techniques are supported by

language/toolset used in the specification effort.

6.1.6 Sensors and Actuators

Phases two through five have illustrated how to move from the commonality analysis
in phase one to a completed REQ specification in phase five. In this final phase, the
process will be repeated for the IN’ and OUT’ relations. In discussing this phase, we
point out which parts of the process are generalizable and what information needs to

be considered specifically for the hardware.

Identify and Describe the Sensors and Actuators: The first step in adding

the IN’ and OUT" relations is to identify and describe the sensors and actuators

145

involved in the system. After that, the input and output variables for the software
can be identified. This activity is analogous to phase two for the REQ relation.

For the ASW, each aircraft as a number of altimeters that measure the altitude,
a status indication from the DOI, a reset signal, and an inhibit signal. All inputs
except for the altimeters can be mapped directly to the existing monitored variables.
Therefore, on the input side we will concentrate in refining the IN’ relation for the
Altitude monitored quantity.

The commonality analysis from phase one tells us that we will have a varying
number and type of altimeters for each aircraft that we wish to build. Furthermore,
we know that the different types of altimeters yield different information: analog
altimeters give only above or below whereas digital altimeters yield a numeric altitude.

The DOI command indication and the failure output are the controlled variables
of concern for the QUT’ relation. Only the failure output needs significant changes
to specify the output relation.

For the failure indication, the ASW must produce a pulse on a watchdog timer
at least every 200 MS or else the other devices on board the aircraft will believe that
the ASW has failed. This is the opposite from the way that the REQ relation works,
where we only produce an indication if there was a failure. Thus, we need a small

state machine that will produce a pulse if there is not a failure.

Outline the IN’ and OUT’ Relations: Just as for the REQ relation, the first
step in specifying IN’ and OUT’ relations is to outline the computation. In this
activity, depending on the complexity of the IN'’/OUT’ relation, a data dependency
graph might be developed, modes identified, and so forth. Furthermore, if the IN’ and
OUT’ relations contain sufficient structure, modules may be introduced. Indeed, in
systems with noisy sensors/actuators, or sensors/actuators with complex IN relations,

the IN’ and OUT’ relations may represent the majority of the complexity of the

146

software. Thus, the stepwise refinement process defined as the foundation of the
methodology combined with the activities of this phase will be essential to achieving
a correct specification of the SOFT relation.

In the ASW family, each aircraft differs in the number and type of altimeters
and in the algorithm used to determine whether the aircraft is above or below the
threshold from the various altimeters. The first thing to notice is that the specification
of REQ from phase five expects a numeric altitude input. For compatibility, we will
change the input to REQ to be a thresholded value and move the thresholding of the
digital altimeters into the IN’ relation.

Thus, the overall structure of the IN’ relation for Altitude is given by the following

module definition:
MODULE Altimeters_IN_P6
INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : O
EXPECTED_MAX : 10

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : O
EXPECTED_MAX : 10

END IMPORT

IMPORT DigialAlt_P6 : [1 TO NumDigitalAlt] OF INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft

147

EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [1 TO NumAnalogAlt] OF AboveBelowType
END IMPORT

IMPORT DigitalQuality P6 : [1 TO NumDigitalAlt] OF AltitudeQualityT ype
END IMPORT

IMPORT AnalogQuality P6 : [1 TO NuméAnalogAlt] OF AltitudeQualityType
END IMPORT

IMPORT INTERFACE AltitudeVoter_P6
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType
END EXPORT

END INTERFACE

DEFINITION
END DEFINITION

END MODULE

The interface AltitudeVoter will be used by all the various implementations of the

altitude voting algorithm. The specification for each aircraft will decide how many

148

altimeters and which algorithm to use. This is discussed in greater detail in the next

chapter.

Specify the Normal-Case: For this activity, we need to fill in the actual behavior
of the IN’ and OUT’ modules that we have declared. At the end of this activity, it is
possible to simulate the entire SOFT relation by connecting the IN’, OUT’ and REQ
relations together. The definition of the Altimeters IN module is given in Figure 6.10.
We also need to specify the various altitude voting algorithms, but for space
concerns these will not be duplicated here. They can be found in Appendix C.
At this point, it is possible to simulate the entire SOFT relation by connecting

the IN' OUT’ and REQ relations together.

Specify Detailed SOFT Relation: With the preliminary version of the IN’ and
OUT" relations completed, it is possible to move on and consider the startup, shut-
down, and degraded functionality modes of the IN’ and QUT’ relations.

All the analyses that were done on the REQ relation are also applicable to the
IN’ and OUT" relations. They should be consistent and (ideally) complete just as
the REQ relation was refined to be. In addition, analysis to determine the timing
properties of the SOFT relation, and the deviation of the output under noisy data
should be performed.

The outcome of this phase is the completed behavioral specification of the SOFT

relation.

6.1.7 Iteration Among the Phases

As in CoRE, we felt it important to provide guidance on how the specifier would

expect to iterate among the various phases of the idealized process.

DEFINITION

MODULE_INSTANCE ThresholdedDigital P6
[1 TO NumDigitalAlt] OF ThresholdedAltitude_P6
PARENT : NONE

ASSIGNMENT
Altitude_P86 := DigitalAlt_P6,
Threshold_P6 := EXTEND Threshold_P6

TO [1 TO NumDigitalAlt] OF INTEGER,
AboveHysteresis_P6 := EXTEND GoAboveHyst_P6
TO [1 TO NumDigitalAlt] OF INTEGER,
BelowHysteresis_P6 := EXTEND GoBelowHyst_P6
TO [1 TO NumDigitalAlt] OF INTEGER
END ASSIGNMENT
END MODULE_INSTANCE

SLOT_INSTANCE AltitudeVoter_ P6

ASSIGNMENT
Num_of_Alt := NumDigitalAlt_P6 + NumAnalogAlt_P6,
Altitudes = ThresholdedDigital_P6.Result_P6 | AnalogAlt P6,
Qualities = DigitialQuality_P6 | AnalogQuality_P6

END ASSIGNMENT
END SLOT_INSTANCE

EXPORT Altitude_P6
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6
EQUALS AltitudeVoter_P6.Al titude_P6

END EXPORT

EXPORT AltitudeQuality_P6 :
PARENT : NONE
DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6
EQUALS AltitudeVoter_P6.Al titudeQuality_P6

END EXPORT

END DEFINITION

Figure 6.10: The Definition of the Altimeters_IN module

149

150

Constructing Partial Specifications: In the specification process, it is common
to have one portion of the specification more refined than another portion. This is
sometimes a conscious choice — focusing on some aspects of the system while ignoring
others. For example, during the Sensors and Actuators phase, some of the specifica-
tion will still be at the detailed requirements phase while the effort concentrates on
refining the specification of a particular sensor or group of sensors and actuators as
described above.

Another situation is when abstracting away certain portions of the computation.
For example, in avionics systems sometimes there are complex conditions that must be
satisfied for certain mode transitions. These often depend on control laws, continuous
functions, etc. that might not included in this stage in the modeling. Furthermore,
the way in which these conditions are met is often well understood. Thus, it may
be beneficial to delay defining exactly how these conditions are satisfied until later
in the specification effort. When this information is added, the new parts of the
specification will need to go through the phases of just like the other parts of the

specification.

Monitored and Controlled quantities: Sometimes, new monitored and con-
trolled quantities will emerge as the preliminary behavior specification is constructed.
There are several reasons why this might be the case. First, additional information
from the environment may be needed to be able to compute the values of the con-
trolled quantities. Second, as the system is studied in more detail, it may become
clear that there are more controlled variables. Finally, to make it possible to make
clear and concise statements about the domain it is sometimes easier to adjust the
particular choices of monitored and controlled variables rather than express a very

complex relationship between the ones that are already defined.

151

Draft Requirements and Requirements Structure: It is natural to switch
back and forth between the structuring activities and the development of the be-
havioral specification. Specification of the behavior in more detail may lead to the
discovery of modules or pieces of the computation that may be reused across different
sections. In addition, it may be desirable to reorganize the computation, or refine
the interfaces of the modules. Similarly, as the module structure is developed, new
information about how the computation is to be performed may come to light.

The iteration between these activities is similar to the iteration that one would
normally see in an object oriented development between the creation of the class
diagrams and the creation of sequence diagrams. That is, the creation of a sequence
diagram may inspire the creation of a new class (or classes) and the creation of a new

class inspires sequence diagrams that use that class.

Detailed Requirements and Prior Phases: When adding the information in
the detailed requirements phase, the structures that have been chosen for the re-
quirements may not be conducive to adding fault tolerance, etc. Thus, the require-
ments may have to be restructured to support these additional behaviors. In general,
it is necessary to keep these issues in mind from the beginning of the specification
effort, but beneficial to not get bogged down in the details when first understand-
ing the system. This is a delicate balance which becomes easier with experience in

specification.

Of course, it is impossible to give a detailed overview of all the possible ways
that one might iterate between the various phases of the methodology. We have en
devoured here to point out the most common sources of iteration so that a specifier

may proceed through the method with an “eye to the future” in the earlier phases.

152

6.2 Languages for FORMpcs

This section describes some of the languages that are suitable for use with the
FORMpcs process. The goal of this section is not to be a comprehensive survey
of all specification languages; that would consume far to much space in the disserta-
tion. Rather, the goal is to illustrate that FORMpcs is applicable to a wide variety
of languages, which was one of the goals in developing the methodology.

Of course, languages are not equally suitable for use with FORMpgg. In partic-
ular, there is a noticeable difference between languages that support some built-in
notion of modularity and reuse and those languages that do not. This is understand-
ably due to the heavy emphasis on reuse and product families in FORMpcs.

Statecharts (36, 37, 38| is based around a named-event driven execution model.
Events are produced by taking transitions in the state diagram and those events can
cause other events, and so forth. These events are globally visible and, as a result, it
can be very difficult to know how changes to one part of the system can effect other
parts.

During the specification of TCAS II (Traffic Alert and Collision Avoidance II)
using a Statechart variant (the original version of RSML), Leveson et al. discovered
that a major source of errors in the specification were due to the event mechanism
of Statecharts [65]. In addition, this global event visibility makes it very difficult to
reuse pieces of a Statecharts specification or to “simulate” the effect of modules.

SCR (Software Cost Reduction) [45, 46] is a tabular, state-based specification
language designed with a formal semantics. The tabular nature of SCR results in
a data-flow type specification language where a change in an input variable results
immediately in a change in the tables that depend on that input variable. This in
turn results in changes in the tables that depend on those tables and so forth until

table(s) defining the values of the output variable(s) change. Circular dependencies

153

are clearly not allowed in SCR, because they would result in potentially infinite
recursion. The data flow, non-circular structure of SCR makes is relatively easy to
achieve a separation of concerns among the pieces of a computation. Thus, it would
be possible in SCR to cut and paste groups of variable definitions to simulate the
effect of a modularity construct (this would work similarly for the current version of
RSML™°).

The CoRE methodology uses a modified version of SCR as its example. In the
modified version, SRC is augmented with “classes” that are essentially groups of
elements in the data dependency diagram. Nevertheless, CoRE classes are static and
cannot be “instantiated” multiple times within the specification. For example, we
could not defined a CoRE class that voted on the altitude and then reuse that class
definition n times, once for each altimeter input.

Statecharts, SCR, and RSML ™ have all been used successfully on moderately
sized process-control systems projects. Nevertheless, it will be challenging to use
these languages taking full advantage of the FORMpcs process because their lack of
module support. Clearly, if these languages had a module construct they would be
the top choice for developing requirements for process-control systems.

Most programming languages like C++, Ada, Java, etc. have excellent modularity
features. However, it has been shown that programming languages are simply not
suitable for expressing requirements. They contain too many constructs that may be
abused during the requirements phase to introduce design and implementation detail.

ADLs were discussed in Chapter 2 in regards to their capabilities in the devel-
opment of product families. ADLs have rich modularity and module-interconnection
concepts — these properties are fundamental to ADLs. However, like programming
languages, architecture description languages are oriented specifically towards soft-

ware design and not software requirements.

154

The specification languages Z [101, 119], VDM [24, 31] and other logic-style speci-
fication languages use predicate and/or propositional logic to record system specifica-
tions. Such languages would be well suited to use with FORMp¢s, because specifying
details at an appropriate level of abstraction would not be a problem. In addition,
it would be difficult to introduce design and implementation details in such a spec-
ification. Furthermore, Z and VDM both have good modularity support and would
be able to implement the product family and structuring features of FORM p¢s.

The drawback of logic-style specification languages such as Z and VDM has proven
to be that some stake holders in the project have difficulty understanding the math-
ematical symbols and concepts used. Of course, engineers and scientists would have
no problem with these techniques, but higher-level managers and regulatory agencies
may have (and have had) problems with these notations.

The synchronous languages Esterel [8] and Lustre [35, 34, 73, 74] are several
languages both supported by the same French commercial company, Esterel Tech-
nologies. These languages were developed as specialized programming languages for
the process-control community; both are supported by graphical toolsets. In addi-
tion, both languages were designed from the beginning to have a simple and elegant
syntax and semantics. Therefore, these languages have been at the forefront of the
static analysis and code generation for commercial tools. Finally, both languages also
have good, albeit simple, module support which would enable them to be used with
relative ease in the FORMpcg process.

The primary drawback of Esterel and Lustre is that they were designed to be
programming language replacements. Therefore, many features desirable for the re-
quirements level are not in the language or tools (nicely formatted documents, the
ability to add descriptive comments, and so forth).

This section has presented which languages FORM pcs might be applied to. Cer-

155

tainly, we would like FORMpcs to be able to be applied to many languages so
that users can choose the language that best suits their needs. Nevertheless, not
all languages are created equal. Languages that do not have a builtin modularity
construct have difficulties representing the product family and structuring concepts
in FORMpcs, while languages which do have a module construct have a tendency
to be not understandable by all stake holders in the project or they are at too low a
level of abstraction. In the next chapter we will address this issue by illustrating how

a module construct can be added to RSML™¢.

6.3 Summary

This chapter has presented an overview of FORMpcs. FORM pcs represents the inte-
gration of the product family structuring techniques that were presented in Chapter 4,
the overall specification structure and process structure presented in Chapter 5, as
well as many techniques that were presented by others in previous research. In ad-
dition, in this chapter we have presented a number of ad-hoc structuring techniques

that were introduced in the methodology.

Chapter 7

Module Construct for RSML ¢

This chapter presents the final contribution of the dissertation, a module construct
for the specification language RSML ™. As we discussed at the end of the preceding
chapter, reuse and product family structuring in RSML™® must be accomplished
via error prone and tedious “cut-and-paste” techniques. Nevertheless, RSML ¢ is
otherwise a good notation for expressing requirements, having many desirable features
such as understandability by all stakeholders, simulation capabilities, and formal
analysis support. Therefore, there is strong motivation to create a module construct
for RSML™°.

First, we will give a high-level overview of the chapter so that the reader may
understand the various pieces of the module proposal and how they contribute to
achieving the goals that were established for the modules. Next, we move into the
actual description of the module construct itself starting with the general syntax and
usage, and moving on to placing modules within the state-hierarchy, the functional
module reference syntax, initial values for modules, and module interfaces as imports.

Finally, we present a summary of the module proposal at the end of the chapter.

7.1 Overview

The incorporation of a module construct in RSML™¢ allows for full support of the

FORMpcs process. In addition, modularity construct has the potential to signifi-

156

157

ASW_REQ

(») Threshold

[»] Attitude
DOI_Status

[»] Attitude_Quality
ASW_Failed

[»]DO1_Status

Figure 7.1: The ASW_REQ module, interface diagram

cantly shrink the size of large specifications, and opens up the possibility of perform-
ing verification of parts of systems rather than entire systems, potentially making
analysis and conceptual understanding of specifications much simpler. Thus, the
addition if a module construct to RSML™ has many advantages.

When adding a module construct to RSML™¢, several goals must be achieved.
First, the module will be the unit of reuse within a specification. Second, the module
construct must enable (or be amenable) to the kinds of reuse that will enable analysts
to develop specifications for product families and other structuring techniques in
FORMpcg. Third, the module must support current and future analysis methods.
Finally, we would also like, as much as possible, to keep the language simple —
to minimize the number of concepts necessary to create and explain an RSML™®
specification.

In order to be a unit of reuse, a strict module interface must be established and
the requirements on the environment of the module be stated explicitly. A graphical
representation of a slightly simplified ASW REQ interface is shown in Figure 7.1.
If a state variable that exists inside of the ASW_REQ module may reference state
variables outside of the ASW_REQ module then that breaks the encapsulation of
the module. Such a module would not be able to be reused in a new context unless

the new context provided the same state variables that were referenced outside the

158

ASW_REQ module as the original context. Therefore, we restrict the state variables
inside of a module to referencing only other entities inside of the module and elements
of the module’s interface. This allows a module to be moved from one context (or
specification) to another without fear of breaking the functionality and is key to
enabling reuse.

Similarly, state variables outside of the module’s borders may not access entities
inside of the ASW_REQ module. If they did, then it would be impossible to replace
the module’s implementation with an alternate implementation. The capability to
do just that is important for product families where we might like to establish an
interface for an algorithm or behavior and have each family member choose which
algorithm to use. The ASW family does just that with the altitude voting algorithms
(discussed in Section 7.6, see Figure 7.3).

As we discussed in the previous chapter, sometimes it is useful to have different
behaviors underneath various degraded functionality modes. The modules provide
a mechanism for providing a clear grouping of functionality for a particular mode.
Furthermore, a module might be parameterized to function with different tolerances
and thereby be capable of acting as several different degraded modes depending on
its instantiation. Thus, the capability of a module instance to have a parent variable
is essential in implementing some of the structuring techniques in FORMpcg. We
discuss module instances as children of state variables more thoroughly in Section 7.3
and 7.4.

Finally, we would like to have a simple semantics for the language. The modules
provide a convenient means to create building blocks of functionality that would
otherwise be required to be included in the language definition itself. To make these
smaller, building block-style modules easier to use we have introduced the functional

module syntax of Section 7.5.

159

7.2 General Usage

As discussed in Chapter 3, an RSML ¢ specification can be thought of as a relation
from the inputs (as set by the input interfaces) to the outputs (those variables send
out by the output interfaces). Each state variable in an RSML ¢ specification contains
an assignment relation that represents a piece of the overall relation computed by the
specification.

Similarly, a module may be thought of as a relation between the imported vari-
ables and the exported variables. Nevertheless, simply providing a relation from the
imports to the exports does not allow a module to be computed: we must provide
an assignment relation for the imports. Thus, when a module is used, or instanti-
ated, within the context of an RSML™® specification then (1) we must provide an
assignment relation for all the module’s imports, and (2) the module instance pro-
vides a piece of the overall relation represented by the specification. In a sense, a
module instance may be thought of as just another piece of the relation, albeit a
larger aggregate than a state variable.

Modules in RSML™° consist of several parts:

e The interface part of the module defines which values are imported into the

module and which values are visible to the externally (or exported).

e The definition part of the module defines the encapsulated functionality, or the
“secret,” of the module. The definition part includes the assignment relation
of all the exported state variables and it also may contain other state variables

which are used in computing the module’s exports.

e The instance part of the module defines how the module is used within the

specification. The instance determines how the imports to the module are to

160

be provided by the instantiating scope (i.e., the assignment relations of the

imports).

We make a distinction between these three parts for good reason. The interface
of a module may be shared by several module definitions; this is done for the ASW
altitude voting algorithms later in this chapter. This is similar to abstract interface
inheritance in object-oriented terms. The module definition part may be instanti-
ated multiple times, with each time providing different assignment relations for the
imported variables (thus, a module definition is a kind of “template” for a module
instance). This is similar to instantiating a class in object-oriented terms.

As mentioned above, modules define a scope. Within the module definition, the
only variables that can be accessible are the imported variables of the module, the
exported variables of the module and other variables defined within the module.
Similarly, at the scope in which the module is instantiated, the only variables which
will be accessible are imported variables (which must be provided by the instantiating
scope) and the exported variables. The same is true for macros and functions; those
macros and functions that are declared within the module are accessible only within
the module and those that are declared outside the module are not accessible inside
it. Finally, the simulation time (currently given special treatment) will now be the
same as any other variable and will thus have to be imported into each module that
desires to use it.

The module construct for RSML™° will have a global scope for all types, module
interface declarations, and module definitions. However, the user will be able to
declare generic types, similar to templates in C++, within the modules. A generic
type mechanism is necessary to allow RSML™° be able to define modules that will
adequately replace PREV_VALUE, PREV_ASSIGN, etc. This is discussed in more
detail in Section 7.5.

161

The simplest usage of modules is when the interface is used as an anonymous
component of the module definition. For example, the module encapsulating the

REQ relation of the ASW might look like the following.

TYPE_DEF AltitudeQualityType { Good, Bad }
TYPE_DEF OnOffType { On, Off }

MODULE ASW_REQ
INTERFACE :

IMPORT MON_Altitude : INTEGER
EXPECTED_MIN : -2000
EXPECTED_MAX : 50000
UNITS : ft

END IMPORT

IMPORT MON_Altitude_Quality : AltitudeQualityType
END IMPORT

IMPORT MON_DOI_Status : OnOffType
END IMPORT

EXPORT CON_DOI_Status : OnOffType
END EXPORT

EXPORT CON_ASW_Failed : Boolean
END EXPORT

IMPORT_CONSTANT Threshold : INTEGER
EXPECTED_MIN : O
EXPECTED_MAX : 8192
UNITS : ft

END IMPORT_CONSTANT

END INTERFACE

DEFINITION
/*
In here, we have the REQ part of the ASW spec.
Here, we can only reference IMPORTs, EXPORTs and
other variables, macros, and functions declared

within the definition.

However, we can access the AltitudeQualityType,

162

and other types declared outside of the module.
*/

END DEFINITION

END MODULE

Now that the definition of the module is created, we can use it as many times
as desired in the specification. In this case, we probably only want one ASW_REQ,
but in other cases, we will use the module definition to “stamp out” many copies
of a particular module definition. Each of these module instances must say how all
the imports are assigned by the scope in which the instance is declared. For the

ASW_REQ module, the module instance declaration is given below.

MODULE_INSTANCE ASW_REQ_Instance : ASW_REQ
PARENT : NONE

MON_Altitude := IN_Altitude
MON_Altitude_Quality := IN_Altitude_Quality
MON_DOI_Status := IN_DOI_Status

Threshold := 2000

END MODULE_INSTANCE

These expressions defined the assignment relation for the imported variables. One
view the expressions as simply an assignment relation with one clause, ¢ = e if TRUE,
where i s the imported variable and e is the expression

As a second example, in the FGS specification there is a left and a right FGS.
One way to model this situation might be to define an FGS module that would then

be instantiated several times. For example,
MODULE FGS :

INTERFACE :
/>
FGS imports and exports are defined here
*/

END INTERFACE

163

DEFINITION :
/*
State variables, Export definitionms, and other entities
defining the behavior of the FGS are defined here
*/
END DEFINITION

END MODULE

MODULE_INSTANCE LeftFGS : FGS
PARENT : NONE

/>

This module instance defines that assignment relation for
the imports of the left side FGS

*/

END MODULE_INSTANCE

MODULE_INSTANCE RightFGS : FGS
PARENT : NONE

/*

This module instance defines the assignment relation for
the imports of the right side FGS.

*/

END MODULE_INSTANCE

Note that FGS module may be instantiated any number of times. For example, if we
wanted a center FGS in addition to the Left and Right, we could very easily do this
by simply adding another MODULE_INSTANCE block to the above.

We can see from the examples above that the module instance definition includes
a PARENT clause. This allows a module instance to be placed as a child underneath a
state variable in the instantiating scope. Exactly how this is done and what it means

for a module to be placed under a state variable is explained in the next section.

164

7.3 Module Instances Within the Hierarchy

As mentioned earlier, each state variable and module instance in an RSML ¢ speci-
fication is a piece of the overall relation that is computed by the specification. When
we say that a state variable is a child of another state variable in RSML ™ that is
a statement that the child variable is only relevant when the parent variable has a
particular value; that is, we do not care what the value of the child variable is if the
parent does not have the appropriate value and the RSML ¢ semantics state that the
value of such a variable is UNDEFINED.

This view extends naturally to module instances, which are really just a larger
aggregate of the overall specification. For example, the FGS has a Flight_Director
variable that governs whether or not the FGS shall produce outputs controlling the
aircraft (this can be equal to ’On’ or 'Off’). On way that the FGS might be modeled
this way if the Flight_Director state machine was placed at the top level and the
behavior for the FGS were place beneath the On state as in the example below.

STATE_VARIABLE Flight_Director : OnOffType

DEFAULT_VALUE : Off
EQUALS On IF OnButtonPressed()
EQUALS 0ff IF OffButtonPressed()

END STATE_VARIABLE

MODULE_INSTANCE FGS : FGS_Functionality
PARENT : Flight_Director.On

/* Define how the imports to FGS_Functionality are
provided. =/

END MODULE_INSTANCE

If the FGS is in the Off state, then any values computed by FGS_Functionality
should not matter; thus, the semantics defines them to be UNDEFINED. In more

detailed terms, the declaration of a ‘child’ module instantiation at location X is the

165

same as directly declaring the module’s top-level variables as child state variables of
X.

As a second example, consider the degraded modes of functionality in the ASW.
For each value of ASW _System_Mode a module is instantiated that represents the
behavior of the ASW in that mode. Below we have reproduced the top-level mode

that controls which module is active.

STATE_VARIABLE ASW_System_Mode_P5
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalQperating TO Degraded IF
EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality _P5 = Valid, 0 S, Clock) > 1 MIN

TRANSITION Reset TO NormalOperating IF
DURATION(PRE(ASW_System _Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

7.4 Imitial Values

A state machine is usually defined with an initial configuration, a set of states, and

a set of transitions. Not surprisingly, in RSML™ an initial configuration is also

166

necessary. Currently, this initial configuration is supplied by the user in the form
of INITIAL_VALUE clauses supplied for each input variable and state variable. The
current initial configuration is static and specified completely by the user of the
language.

This method of determining the initial configuration has proven to be troublesome.
First, it makes it difficult to reorganize the state hierarchy. Consider the simple state
hierarchy in Figure 7.2. At the top of the hierarchy, there is the state variable X,
that can take on values ’'a’, 'b’, or ’¢’. X has two children, Y1 and Y2. Y1 exists
under the value 'a’ of X and Y2 exists under the value 'b’. Because the initial value
of X is equal to ’a’, we must choose an initial value for Y1 (which is ’d’ in the figure).
However, because the initial value of X is not equal to ’b,’ the initial value of Y2 is
required to be UNDEFINED. This applies transitively to Z1 and Z2.

A minor change in the organization of the state hierarchy can, thus, cause major
changes in the initial configuration of the machine. Suppose, for example, that the
initial value of X was changed from ’a’ to ’b.” Then, we would be required to specify
initial values for Y2, Z1, and Z2 whereas no initial values had been specified before.
We may experience similar difficulties when moving state variable Y2 underneath a
different parent variable.

This property presents particularly difficult issues for the modules. Recall from
the previous section that a module instance may be placed under a state variable and
that when this is done all the top-level state variables inside the module essentially
become children of that variable. Unfortunately, there is no way to know what an
encapsulated state variable’s initial value should be. This is because whether or
not the initial value should be UNDEFINED or one of the state variable’s values is
potentially dependent on the parent of the module instance. However, the initial

value would be specified in the module definition; therefore, it is possible to have

X:{a, b, c}
Initial_Value: a

a b
. Y2:{e,f g}
"It?a'l {\C/'a?d:} g Initial_Value:
- ’ UNDEFINED
e 9
Z1:{h i, j) Z22:{k, 1, m)
Initial_Value: Initial_Value:
UNDEFINED UNDEFINED

Figure 7.2: Initial Values of State Variable

167

168

conflicting demands as to what the initial value of an encapsulated state variable
should be for module definitions that are instantiated several times under different
parent state variables. Clearly, this is not a workable situation.

Nevertheless, we must have some way to determine an initial value for all the
variables in the specification. And, this method must not break the encapsulation
of the modules. Therefore, instead of an initial value, it would be better for state
variables to have a notion of a default value. Input variables would retain an initial
value but all state variables would be determined by evaluating their assignment
relations as if they had been UNDEFINED in the previous step. This allows the initial
configuration of the specification to be computed rather than statically specified and
solves the above problems. The default value would not be dependent on context,
so the state variable (or module instance) could function correctly at any position in

the state variable hierarchy.

7.5 Functional Module Syntax

In the above examples, modules have been used to encapsulate relatively large por-
tions of the RSML™ specification. These large-scale building blocks can then be
assembled to form the overall specification.

Modules can also be viewed as much smaller building blocks; this view is common
in the data-flow language Lustre [34]. When used in this way, we can leverage the
power of the module construct to replace some complex language features with module
implementations and thereby simplify the underlying language semantics.

For example, the semantics of the PREV_VALUE and PREV _ASSIGN expressions
are complex and it is difficult to prove properties about them. Currently, the formal
semantics of RSML'e states that the entire history of variable assignments is recorded,

along with the time of assignment. RSML™® provides three expressions to access

169

the variable history lists: PREV_STEP, PREV_VALUE, and PREV_ASSIGN. In
practice, specifiers tend not to use PREV_VALUE and PREV_ASSIGN, finding them
both too complex and too restrictive. Also, to determine the PREV_STEP value of
a variable, it is necessary to check whether the variable was assigned in the current
step.

Furthermore, any translations from RSML™® to other languages must account for
these complex expressions in the translation; expressions which many desired target
languages, e.g., SMV (75, 87|, do not have in their semantics. Using the modules, we
can express the same concepts, but with a simpler semantics and translation.

The only problem is one of syntax: it is inconvenient to be required to declare
a named module instance for each time that we desire to use one of these sorts of
modules. Therefore, modules that do not import module interfaces and have only
one export can be thought of as “functions with state.” We provide an alternative
syntax for these types of modules, similar to that provided by Lustre, that is in the
style of a function call: ModuleBodyType(exprl, expr2, ..., exprN).

Although this syntax is only available to modules with one output, it is quite
useful for defining expressions like: DURATION, PREV_VALUE, PREV_ASSIGN,
etc. As we indicated above, this syntax allows us to simplify the language seman-
tics significantly with respect to these constructs while simultaneously increasing the
expressiveness.

In the next version of RSML™¢, the only values for variables which will be available
are the value at the beginning of the step, or PRE(X), and the value at the end of
the step (or current value) which will be referenced as it is now. Instead of recording
histories, only the value of a variable from the previous step and its current value
need be recorded. This approach is similar to many other languages such as SCR [43],

Lustre [34], Esterel (8], Z [102], SMV (75, 87], and many more.

170

Using just these two constructs, we can define modules to sample the value stream
of a variable at arbitrary points. This mechanism provides both a formally simpler
and more flexible scheme for recording variable histories. For example, the following

illustrates the construction of a PREV_VALUE module.

MODULE PREV_VALUE
INTERFACE

/* Since the PREV_VALUE module should be able to operate on
many different types of variables, it has a declared
generic type. Values of generic type in RSML-e can be
compared for equality and inequality, but arithmetic
operations are not allowed

*/
GENERIC_TYPE G
/* The import T is the variable that we want to sample */

IMPORT Variable : G
END IMPORT

/* The import InitialValue is the initial value of the
result of the PREV_VALUE module */

IMPORT_CONSTANT InitialValue : G
END IMPORT_CONSTANT

/* The export PreviousValue gives the result of the
PREV_VALUE module */

EXPORT PreviousValue : G
END EXPORT

END INTERFACE
DEFINITION
/* This defines the assignment relation for the Previous-
Value exported variable. We can see that it is initially
set equal to the InitialValue import. Then, if the
value changes, the value of PreviousValue is updated.

*/

EXPORT PreviousValue

171

DEFAULT : ImnitialValue
EQUALS PRE(PreviousValue) IF PRE(PreviousValue) = Variable
EQUALS PRE(Variable) IF PRE(PreviousValue) != Variable

END EXPORT

END DEFINITION
END MODULE

This implementation of PREV_VALUE provides the same functionality as in the
current production version of the tools. Suppose that we had a variable, X of which
we wanted the previous value. We could simply write PREV_VALUE(X, UNDEFINED).

Currently, times are integral in the current formal semantics of RSML™°. Times
are recorded along with each variable assignment and are used for computing all of
the PREV expressions. Of course, the times are useful for their own sake; they can
be used to determine how long a variable has held a particular value, for instance.

Nevertheless, this integration of times into the variable history is a mistake for the
following reasons: (1) it is unnecessary for many variables and (2) the time expressions
that are derivable from this scheme are not very flexible. Furthermore, with modules
being able to describe PREV_VALUE and PREV_ASSIGN expressions better than
the current variable histories, there is little reason to keep variable histories around.

Appendix A gives the definition of the other standard modules that we have
defined and are meant to be used with any RSML™® specification under the new

version of the language.

7.6 Module Interfaces as Imports

Each module will have one and only one interface that defines the boundaries of the
module. A module’s interface may be declared separately as a named entity (like a
type) and, therefore, several modules may share the same interface. This capability

might be used, for example, to define a number of different tracking, hysteresis, or

172

error correcting behaviors. Furthermore, an interface may import other interfaces.
An imported interface acts like a “slot;” any module which supports the imported
interface may be plugged in by the instantiating scope. This makes it possible, for
example, to encapsulate algorithms and leave the choice of which particular algorithm
to use to the enclosing scope of the module.

Why might we like to do this? Consider the ASW example defined earlier. Now,
we wish to refine our REQ model of the ASW to REQ’ so that we can add the IN’
and OUT’ relations. However, the first problem that we encounter is that for our
family of ASW we have both analog altimeters which only give above and below the
threshold and digital altimeters which give a number for the altitude. Furthermore,
suppose that the different aircraft in our product family have a different number
of altimeters. For example, a commercial jet may have two analog and two digital
altimeters whereas a personal aviation craft may only have one of each.

To complicate matters even more, different customers demand different algorithms
for determining, from a variety of altitude data, whether or not we are above or below
the threshold value. One customer wants the altitude to be considered “below” when
at least one altimeter reads below; another customer wants all of the altimeters to be
below before it is declared; finally, a third customer wants a majority of the altimeters
to be below before the altitude is declared below.

We can deal with this kind of complexity by refining the REQ relation so that the
ASW_REQ’ module imports the AltitudeVoter interface. Then, the enclosing scope
may choose which implementation of AltitudeVoter satisfies the particular customer’s
requirements. This is given in textual format below and graphically in Figure 7.3.

MODULE ASW_REQ_Prime :

INTERFACE
IMPORT INTERFACE AltitudeVoter
END IMPORT

173

AllBelow
AltitudeVoter (AltitudeVoter)
(») Theeshald
(®) Num_of_AnalogAk ASW_REQ'
Th
[»]Anagann 3 Implemamationsj AnyOneBelow Choose one mm
[>] Anatog_Quaiityl Balow 0 (AltitudeVoter) AltitudeVoter DOI_Siatus
DOI_Status ASW_Failed

Digital_Quakity)
] MajorityBelow

(AltitudeVoter)

-

Figure 7.3: The ASW_REQ’ model illustrating the utility of nested interface defini-

tions

/* Other imports and exports of ASW_REQ here */
END INTERFACE
DEFINITION
SLOT_INSTANCE VotedAltitude : AltitudeVoter
/* Inside of ASW_REQ, we instantiate the module
that was plugged in so that we can use the
imports and exports of the voting algorithm

in the REQ relation
*/

END SLOT_INSTANCE

END DEFINITION
END MODULE

The full specification of the individual altitude voting algorithms may be found

in Appendix C.

7.7 Conclusion

In this chapter, we have presented the essentials of the module additions to the next

version of RSML~¢. This module construct will provide RSML™*with the ability to

174

fully support the FORMpcg process as well as providing specifiers with many more
options in organizing specifications in RSML™°, a cleaner RSML ™ semantics, and

the possibility of new analysis techniques based on the module structure.

Chapter 8

Conclusion and Future Directions

This dissertation has visited a number of different topics, from structuring of product
families in Chapter 4 to a methodology for safety-critical process-control systems in
Chapters 5 and 6, to the addition of a module construct to RSML™® in Chapter 7.
In this final chapter, we take a step back and revisit how the different pieces of the
work connect with one another. We also look to the future to see in which directions

the work presented in the dissertation is expected to progress.

8.1 Conclusions

The goal of the work presented here was to reduce some major barriers to industrial
acceptance of formal specification techniques. Of course, achieving industrial accep-
tance of formal methods is not something that may be addressed within the scope
of one doctoral dissertation. But specifically, we wanted provide guidance on how to
construct formal specifications and to make it easier to develop a formal specification
for a family of products so as to facilitate reuse.

The dissertation has three main contributions: (1) the development of structuring
techniques for formal requirements specifications, including family structuring tech-
niques, (2) the addition of the module construct to RSML™¢, and (3) the integration
of this work with existing work to form a comprehensive methodology for developing

formal specifications of process-control systems.

175

176

We presented how the the contributions of this work, while they may seem to be
from somewhat unrelated areas, fit into an overall framework (first shown in Figure 1.1
and now given again in Figure 8.1). The framework helped to organize the dissertation
and we will use it here to review the information that was covered.

We began in Chapter 4 by discussing the most general and fundamental contribu-
tions of the dissertation: those in product family structuring. As we began to look at
structuring the specifications for product families, it became clear that current work
in product families did not have a clear separation between the requirements for a
product line and the design and implementation of the product line. The structuring
technique in Chapter 4 allows for this separation ~ this work first appeared at the
Fifth International Requirements Engineering conference [106]. Furthermore, it is
important to point out that this work is applicable to all software systems, not just
the safety-critical process-control systems of interest to this dissertation.

In the next chapter, we started to build the foundation for what would eventually
become our methodology for process-control systems. This chapter primarily contains
the early work on process and structure that was presented in [109, 104]. Then, in
Chapter 6, we have given the practitioner’s view of the methodology, detailing the
various phases and activities.

Chapter 6 also contains a number of different smaller contributions that were
made as the methodology was developed. For example, the classification scheme for
the different types of commonly encountered monitored and control variables, and the
structuring method to deal with failure modes and degraded modes of functionality.
The methodological work presented in Chapters 5 and 6 is applicable to many different
specification languages and we gave examples of a number of them at the end of
Chapter 6.

Finally, in Chapter 7 we have given a proposal for the next version of RSML ™,

177

Most Fundamental

Support for

Most General
0O Concepts

Product Famlly Contribution

Methodology Wo

RSML™ Addlition

Most Languagh and
Technique Specific

Figure 8.1: Framework of Contributions. Bubbles with a Bold outline indicate areas
of contribution by this dissertation; bubbles with a grey background indicate areas

where significant research results have been achieved.

178

including how to add a module construct to RSML™® that will better support the
FORMpcs methodology.

Work such as the research presented in this dissertation is inherently difficult to
evaluate. No easy experiments can be run to validate the work; and, long term studies
(i.e., lasting several years) cannot be done in the scope of doctoral work. F urthermore,
corporations are not generally willing to have their own full-time employees adopt a
new and unproven methodology or techniques so evaluation in an industrial setting
proves to be a challenge. Nevertheless, it is important for some evaluation of the
work to be done, so what kind of evaluation and validation was done on the work
presented here?

One of the best ways to evaluate process and methodological work is to publish it
so that others in the field can critique and review it. All of the early and foundational
work of this dissertation has been published in top conferences and/or journals that
are related to the topic. Feedback from these venues has been uniformly positive.

Second, we have been successful at evaluating these techniques in an industrial
setting despite the difficulties involved in doing so. Through the Critical Systems Re-
search Group’s partnership with Rockwell-Collins, many of the techniques presented
in this dissertation have been evaluated and used on their family of flight guidance
systems. In addition, the author personally evaluated the techniques during a sum-
mer study at Medtronic, where the methodology and structuring techniques were
applied to a family of implantible pacemakers and defibrillators. The results of both
of these experiences have been positive and have validated the proposed techniques.
Unfortunately, details of these evaluations cannot be made public due to the pro-
prietary and sensitive nature of the systems developed within both Medtronic and
Rockwell-Collins.

In summary, in this dissertation we have developed a number of structuring tech-

179

niques and an overall methodology for process-control systems that should allow these
techniques to achieve a new level of acceptance in industry. Furthermore, we have
added a module construct to the language RSML™® that will allow RSML™° to better
support the aforementioned methodology and techniques. Finally, we are confident
that these techniques are usable by industry and make significant contributions to the
field due to their positive reviews from leaders in the field, successful publication in
leading conferences and journals, and successful application to real-world industrial-

sized problems in two separate organizations.

8.2 Future Directions

There are many avenues of future directions for the work presented in this dissertation.
The most immediate are given in Figure 8.1. Generally, the future work may be
broken down into the same directions as the dissertation; thus, future work is possible
in product families, the methodology, and the additions RSML™°.

In the product family area, there is work still to be done on establishing a sepa-
ration of concerns between the product family requirements and the product family
design and implementation. As the first white bubble in Figure 8.1 shows, additional
work is needed in how to elicit the structure of a product family. Current techniques
do not provide guidance on how to discover the dimensions of the product family and
our work in this area is preliminary.

The second product family bubble listed in Figure 8.1 is family structure patterns.
While we have provided a structuring technique for product lines, there must be
patterns in product families that can be identified (similar and analogous to the work
that has been done by the software architectures). These common patterns can then
be used accross many similar product families. Furthermore, this work will have a

strong relationship to the research being done in architectural patterns.

180

Along the methodology aspect of Figure 8.1, additional ad-hoc structuring tech-
niques can be developed ad-nauseum as more patterns of specification language use
become known. Also, as shown in the last white bubble along the methodology aspect,
we may like to add a section to the methodology that specifically mentions patterns of
reuse in the specification domain. Finally, the methodology should be further refined
on more industrial sized case studies and then published as a textbook so that it can
gain wide audience.

The final aspect of contribution shown in Figure 8.1 is the future work with
RSML™¢.

In this dissertation, we have provided a basic module construct that meets the
needs of FORMpcs. In the future, it will probably be desirable to add some kind
of property specification language to the module interfaces (the first white bubble in
the figure). This would allow the user to specify end-to-end properties on the module
that could then be verified formally. Furthermore, properties already verified about
sub-modules could be used in the verification of properties on the enclosing module.

The second white bubble in the figure along the RSML™® aspect shows that it
would be nice if the module construct supported the object oriented notion in a more
full-featured way. Currently, we allow interfaces as imports, but it would be ideal to
allow for a notion of inheritance among modules in RSML¢.

Finally, we have a specification of the array concept for RSML™° that is not
yet fully completed that would complement our work with the modules. This array
construct needs to be added to the language so that we can complete the work in
elminating complex expressions from the language and so that it is easier to specify
large systems that are likely to make use of the array construct.

In summary, there is much that could be done in the future based on the work

presented in this dissertation. All aspects of the research - product families, the

181

methodology, and RSML™°- contain areas for future research.

Bibliography

[1] Activmedia robotics website. Makers of the Pioneer robot.
http://www.activrobots.com/.

(2] R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University, May 1997.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249, July
1997.

[4] Mark Ardis, Nigel Daley, Daniel Hoffman, and Harvey Siy. Software product
lines: A case study. Software Practice and Ezperience, 2000. To Appear.

[5] Mark A. Ardis and David M. Weiss. Defining families: The commonality analy-
sis. In Nineteenth International Conference on Software Engineering (ICSE’97),
pages 649-650, 1997.

(6] L. Baum, M. Becker, L. Geyer, and G. Molter. Mapping requirements to
reusable components using design spaces. In The Fourth International Con-
ference on Requirements Engineering (ICRE’00), June 2000.

[7] Lothar Baum, Lars Geyer, Georg Molter, Steffen Rothkugel, and Peter Sturm.
Architecture-centric software development based on extended design spaces.
In Development and Evolution of Software Architectures for Product Families:
The Second International Workshop on Development and Evolution of Software
Architectures for Product Familes (ARES), number 1429 in Lecture Notes in
Computer Science, pages 197-204. Springer, February 1998.

[8] Gérard Berry and Georges Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer Program-
ming, 19(2):87-152, 1992.

[9] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-specific software
architectures for guidance, navigation, and control. International Journal of
Software Engineering and Knowledge Engineering, 6(2), 1996.

182

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

183

B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

Barry Boehm. A spiral model of software development and enhancement. IEEE
Computer, 21(5):61-72, May 1988.

Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. Addison-Wesley, 2000.

K_H. Britton, R.A. Parker, and D.L. Parnas. A procedure for designing abstract
interfaces for device interface modules. In Fifth International Conference on
Software Engineering, 1981.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14-23, March 1986.

Lisa Brownsword and Paul Clements. A case study in successful product line
development. Technical Report CMU/SEL-96-TR-016, Software Engineering
Institute, Carnegie-Mellon University, October 1996.

Grady H. Jr. Campbell, Stuart R. Faulk, and David M. Weiss. Introduction
to synthesis. Technical Report INTRO-SYNTHESIS-PROCESS-90019-N, Soft-
ware Productivity Consortium, Herdon, VA, 1990.

Paul C. Clements. A survey of architecture description languages. In Pro-
ceedings of the Eighth International Workshop on Software Specification and
Design, March 1996.

James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability
on software engineering. IEEE Software, 15(6):37—, November/December 1998.

David A. Cuka and David M. Weiss. Specifying executable commands: An
example of FAST domain engineering. Technical report, Lucent Techonologies,
unknown. Submitted to Transactions on Software Engineering.

David Dikel, David Kane, Steve Ornburn, William Loftus, and Jim Wilson. Ap-
plying software product-line architecture. IEEE Computer, 30(8):49-55, August
1997.

Tom Dolan, Ruud Weterings, and J.C. Wortman. Stakeholders in software-
system family architectures. In Frank van der Linden, editor, Development and
Evolution of Software Architectures for Product Families: Second International
ESPRIT ARES Workshop, number 1429 in Lecture Notes in Computer Science,
pages 172-187. Springer, February 1998.

22]

[23]

[24]

[25]

(26]

[27]

[28]

[29]

[30]

[31]

[32]

184

Debra M. Erickson. Structuring formal requirements specifications for reuse:
A mobile robotics case study. Masters Project, University of Minnesota, April
2000.

Stuart R. Faulk. Product-line requirements specification (PRS): An approach
and case study. In Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering (RE’01), pages 48-55, August 2001.

John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools
and Techniques in Software Development. Cambridge University Press, 1998.

D. Garlan, R. Allen, and J. Ockerbloom. Exploting style in architectural design
environments. In Proceedings SIGSOFT’9/: Foundations on Software Engineer-
ing, pages 175-188, December 1994.

David Garlan. A introduction to the Aesop system, July 1995,
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop—
overview.ps.

Nancy G.Leveson. Intent specifications:an approach to building human-centered
specifications.

Hassan Gomaa. Object oriented analysis and modeling for families of systems
with uml. In The Sizth International Conference on Software Reuse (ICSR),
number 1844 in Lecture Notes in Computer Science, pages 89-99. June, June
2000.

M. Gorlick and A. Quilici. Visual programming in the large verses visual pro-
gramming in the small. In Proceedings of the IEEE Symposium on Visual
Languages, pages 137-144, October 1994.

M. Gorlick and R. Razouk. Using Weaves for software construction and anal-
ysis. In Proceedings of the Thirteenth International Conference on Software
Engineering (ICSE’91), pages 23-34, May 1991.

The VDM Tool Group. The IFAD VDM** toolbox user manual. Technical
Report, IFAD-VDM-43. Available from IFAD, Forskerparken 10, 5230 Odense
M, Denmark, September 1997.

Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A refer-
ence model for requirements and specifications. IEEE Software, 17(3):37-43,
May/June 2000.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

185

Neeraj K. Gupta, Lalita J. Jagadeesan, Eleftherios E. Koutsofios, and David M.
Weiss. Auditdraw: Generating audits the FAST way. In Third IEEE Interna-
tional Symposium on Requirements Engineering (RE’97), pages 188-197, 1997.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. Proceedings of the IEEE, 79(9):1305—
1320, September 1991.

Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Klower
Academic Press, 1993.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software En-
gineering, 16(4):403-414, April 1990.

David Harel and Amnon Naamad. The statemate semantics of statecharts.
ACM Transactions of Software Engineering and Methodology, 5(4):293 - 333,
October 1996.

Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency
in hierarchical state-base requirements. IEEE Transactions on Software Engi-
neering, 22(6):363-377, June 1996.

Mats P.E. Heimdahl, Jeffrey M. Thompson, and Barbara J. Czerny. Specifi-
cation and analysis of intercomponent communication. IEEE Computer, pages
47-54, April 1998.

Mats P.E. Heimdahl, Jeffrey M. Thompson, and Steven P. Miller. Product
families, formality, and reuse: A guide to the FORM pecs method. Technical
report, University of Minnesota, 2002.

C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specify-
ing and analyzing requirements. In Proceedings of the Tenth Annual Conference
on Computer Assurance, COMPASS 95, 1995.

C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency checking of SCR-style
requirements specifications. In Proceedings of the Second IEEE International
Symposium on Requirements Engineering, March 1995.

[44]

[45]

[46]

(47]
[48]
[49]

[50]

[51]

[52]

[53]
[54]

[55]

186

C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency check-
ing of requirements specifications. ACM Transactions on Software Engineering
and Methodology, 5(3):231-261, July 1996.

K.L. Heninger. Specifying software requirements for complex systems: New
techniques and their application. JEEE Transactions on Software Engineering,
6(1):2-13, Januaray 1980.

K.L. Heninger, J.W. Kallander, J.E. Shore, and D.L. Parnas. Software Require-
ments for the A-7e Aircraft. Technical Report 3876, Naval Research Laboratory,
Washington, D.C., November 1978.

Michael Jackson. Software Requirements and Specifications. ACM Press and
Addison-Wesley, 1995.

Michael Jackson. The world and the machine. In Proceedings of the 1995
Internation Conference on Software Engineering, pages 283-292, 1995.

Michael Jackson. Problem Frames: Analyzing and Structuring Software Devel-
opment Problems. ACM Press and Addison-Wesley, 2001.

Michael Jackson and Pamela Zave. Domain descriptions. In Proceedings of
the IEEE International Symposium on Requirements Engineering, pages 56-64,
1992.

Michael Jackson and Pamela Zave. Deriving specifications from requirements:
An example. In Proceedings of the Seventeenth International Conference on
Software Engineering (ICSE’95), pages 15-24, May 1995.

Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E.
Melhart. Software requirements analysis for real-time process-control systems.
IEEFE Transactions on Software Engineering, 17(3):241-258, March 1991.

Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architec-
ture for Product Families: Principles and Practice. Addison-Wesley, 2000.

G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es),
December 1996.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the Eleventh
European Conference on Object-Oriented Programming (ECOOP’97), number
1241 in Lecture Notes in Computer Science, pages 220-242. Springer-Verlag,
June 1997.

187

[56] Grego Kiczales, Erik Hilsdale, Jim Hungunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In Proceedings of the Fifteenth
European Conference on Object-Oriented Programmang, number 2072 in Lecture
Notes in Computer Science. Springer-Verlag, June 2001.

[57] Juha Kuusela and Juha Savolainen. Requirements engineering for product fam-
ilies. In Proceedings of the Twenty-Second International Conference on Software
Engineering (ICSE’00), pages 60-68, June 2000.

[58] W.Lam. Achieving requirements reuse: A domain-specific approach from avion-
ics. Journal of Systems and Software, 38(3):197-209, 1997.

[59] W. Lam. Creating reusable architectures: Initial experience report. ACM
SIGSOFT Software Engineering Notes, 22(4):39-43, 1997.

[60] W. Lam. Developing component-based tools for requirements reuse: A process
guide. In Eighth International Workshop on Software Technology and Engineer-
ing Practice (STEP’97), pages 473-483, 1997.

[61] W. Lam, J.A. McDermid, and A.J. Vickers. Ten steps towards systematics
requiremens reuse. Requirements Engineering, 2(2):120-113, 1997.

[62] W. Lam and B.R. Whittle. A taxonomy of domain-specific reuse problems and
thier resolutions - version 1.0. ACM SIGSOFT Software Engineering Notes,
21(5):72-77, September 1996.

[63] Thomas G. Lane. Studying software architecture through design spaces and
rules. Technical Report CMU/SEI-90-TR-18, Software Engineering Institute,
Carnegie Mellon University, November 1990.

[64] Nancy G. Leveson. Sample tcas intent specification. .

[65] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese. Designing
Specification Languages for Process Control Systems: Lessons Learned and
Steps to the Future. In Seventh ACM SI GSOFT Symposium on the Foundations
on Software Engineering, volume 1687 of LNCS, pages 127-145, September
1999.

[66] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements
Specification for Process-Control Systems. IEEE Transactions on Software En-
gineering, 20(9):684-706, September 1994.

[67)
(68]
[69]

[70]

[71]

[72]

(73]

[74]

[75)

[76]

[77]

188

Robyn R. Lutz. Safety analysis of requirements for a product family. In 1998
International Conference on Requirements Engineering (ICRE’98), 1998.

Robyn R. Lutz. Toward safe reuse of product family specifications. In Sympo-
sium on Software Reusability (SSR’99), 1999.

Robyn R. Lutz. Extenting the product family approach to support safe reuse.
Journal of Systems and Software, 53:207-217, 2000.

J. Magee, N. Dulay, and J. Kramer. Specifying distributed software architec-
tures. In Proceedings of the Fifth European Software Engineering Conference
(ESEC’95), pages 137-153, September 1995.

J. Magee and J. Kramer. Dynamic structure in software architectures. In
Proceedings of the ACM SIGSOFT’96: Fourth Symposium on the Foundations
of Software Engineering, pages 3—-14, October 1996.

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis of
software architectures. In First Working IFIP Conference on Software Archi-
tecture (WISCSA1), Feburary 1999.

F. Maraninchi and Y. Rémond. Applying formal methods to industrial cases:
The language approach (the production-cell and mode-automata). In Proc. 5th
International Workshop on Formal Methods for Industrial Critical Systems,
April 2000.

Florence Maraninchi and Yann Rémond. Mode-automata: About modes and
states for reactive systems. In Proc. European Symposium on Programming,
1998.

Kenneth L. McMillan. Symbolic Model Verifer (SMV) - Ca-
dence Berkeley Laboratories Version. Available at http://www-
cad.eecs.berkeley.edu/ kenmemil /smv.

N. Medvidovic, P. Oreizy, J.E. Robbins, and R.N. Taylor. Using object-oriented
typing to support architectural design in the C2 style. In Proceedings of the
ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software Engi-
neering, pages 24-32, October 1996.

N. Medvidovic, D.S. Rosenblum, and R.N. Taylor. A language and environment
for architecture-based software development and evolution. In Proceedings of
the Twenty-first International Conference on Software Engineering (ICSE '99),
pages 44-53, Los Angeles, CA, May 1999.

[78]

(79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

189

Nenad Medvidovic and David S. Rosenblum. Domains of concern in software
architectures and architecture description languages. In Proceedings of the 1997
USENIX Conference on Domain-Specific Languages, October 1997.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions
on Software Engineering, 26(1):70-93, January 2000.

Sandra K. Miller. Aspect-oriented programming takes aim at software com-
plexity. IEEE Computer, 34(4):18-21, April 2001.

Steven P. Miller. Specifying the mode logic of a flight guidance system in
CoRE and SCR. In Proceedings of the Second Workshop on Formal Methods in
Software Practice, pages 44-53, 1998.

Steven P. Miller. Modeling software requirements for embedded systems. Tech-
nical report, Advanced Technology Center, Rockwell Collins, Inc., 1999. In
Progress.

Steven P. Miller and Alan C. Tribble. Extending the four-variable model to
bridge the system-software gap. In Proceedings of the Twentith IEEE/AIAA
Digital Avionics Systems Conference (DASC’01), October 2001.

M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct architecture re-
finement. IEEE Transactions on Software Engineering, 21(4):356-372, April
1995.

M. Moriconi and R.A. Riemenschneider. Introduction to SADL 1.0: A language
for specifying software architecture hierarchies. Technical Report SRI-CSL-97-
01, Carnegie Mellon University, March 1997.

Gleb Naumovich, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil.
Applying static analysis to software architectures. In Proceedings of the Sizth
European Software Engineering Conference (ESEC ’97), number 1301 in Lecture
Notes in Computer Science, pages 77-93. Springer-Verlag, 1997.

NuSMV: A New Symbolic Model Checking. Available at
http://http://nusmv.irst.itc.it/.

D.L. Parnas. On the criteria to be used in decomposing a system into modules.
Communications of the ACM, 15:1053-1058, December 1972.

190

[89] D.L. Parnas. On the design and development of program families. IEEE Trans-
actions on Software Engineering, 2(1):1-9, March 1976.

[90] D.L. Parnas. Designing software for ease of extension and contraction. In Third
International Conference on Software Engineering, 1978.

[91] D.L. Parnas and P.C. Clements. A rational design process: How and why to
fake it. IEEE Transactions on Software Engineering, 12(2):251-257, 1986.

[92] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure of complex
systems. IEEE Transactions on Software Engineering, 11(3):256-266, 1985.

(93] D.L. Parnas and J. Madey. Functional documentation for computer systems
engineering. Science of Computer Programming, 25(1):41-61, 1991.

[94] Praxis Critical Systems Limited. REVEAL: A Keystone of Modern Systems
FEngineering, issue 1.1 edition, July 2000.

[95] R. Prieto-Diaz. Domain analysis for reusability. In Proceedings of COMP-
SAC’87, pages 23-29, 1987.

[96] R. Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Software
Engineering Notes, 15(2):47-54, 1990.

[97] W.W. Royce. Managing the development of large software systems: Concepts
and techniques. In Proceedings of WESCON, August 1970.

(98] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.
Young, and Gregory Zelesnik. Abstractions for software architecture and tools
to support them. IEEE Transactions on Software Engineering, 21(4):314-335,
April 1995.

[99] Software Productivity Consortium. Consortium Requirements Engineering
Handbook, 1993. SPC-92060-CMC.

[100] Software Productivity Consortium Reuse Adoption Guidebook, version 01.00.03
edition, November 1992. SPC-92051-CMC.

[101] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.
(102] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

(103)

[104]

[105]

[106]

(107)

(108]

(109]

110)

[111]

(112)

191

A. Terry, R. London, G. Papanagopoulos, and M. Devito. The
ARDEC/Teknowledge architecture description language (ArTek). Technical
report, Teknowledge Federal Syst. and U.S. Army Armament Research, Devel-
opment, and Eng. Center, July 1995. Version 4.0.

Jeffrey M. Thompson. NIMBUS: A framework for static analysis and simulation
of system-level inter-component communication. Master’s thesis, University of
Minnesota, December 1999.

Jeffrey M. Thompson and Mats P.E. Heimdahl. An integrated development
environment prototyping safety critical systems. In Tenth IEEE International
Workshop on Rapid System Prototyping (RSP) 99, pages 172-177, June 1999.

Jeffrey M. Thompson and Mats P.E. Heimdahl. Extending the product family
approach to support n-dimensional and hierarchical product lines. In The Fifth
IEEE International Symposium on Requirements Engineering, August 2001.

Jeffrey M. Thompson and Mats P.E. Heimdahl. Structuring product family
requirements for n-dimensional and hierarchical product lines. Requirements
Engineering Journal, 2002. (Submitted).

Jeffrey M. Thompson, Mats P.E. Heimdahl, and Debra M. Erickson. Structuring
formal control systems specifications for reuse: Surviving hardware changes. In
Proceedings of the Fifth NASA Langley Formal Methods Conference (Lfm2000),
2000.

Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller. Specification
based prototyping for embedded systems. In Seventh ACM SIGSOFT Sym-
posium on the Foundations on Software Engineering, number 1687 in LNCS,
pages 163-179, September 1999.

Jeffrey M. Thompson, Michael W. Whalen, and Mats P.E. Heimdahl. Require-
ments capture and evaluation in NIMBUS: The light-control case study. Journal
of Universal Computer Science, 6(7):731-757, July 2000.

W. Tracz. LILEANNA: A parameterized programming language. In Proceedings
of the Second International Workshop on Software Reuse, pages 66-78, Lucca,
Italy, March 1993.

W. Tracz. Dssa (domain specific software architecture) pedagogical example.
ACM SIGSOFT Software Engineering Notes, 20(3):49-62, 1995.

192

[113] W. Tracz, L. Coglianese, and P. Young. A domain specific software architec-
ture engineering process outline. ACM SIGSOFT Software FEngineering Notes,
18(2):40-49, 1993.

(114] S. Vestal. MetaH programmer’s manual. Technical report, Honeywell Technol-
ogy Center, Minneapolis, MN, April 1996. Version 1.09.

[115] Steve Vestal. Metah programmer’s manual. Technical Report 1.1.4, Honeywell
Technology Center, 3660 Technology Drive, Mpls, MN 55418, 1993.

[116] David M. Weiss. Defining families: The commonality analysis. Technical report,
Lucent Technologies Bell Laboratories, 1000 E. Warrenville Rd, Naperville, IL
60566, 1997.

[117] David M. Weiss and Chi Tau Robert Lai. Software Product Line Engineering:
A Family-Based Software Development Process. Addison-Wesley, 1999.

(118] Michael W. Whalen. A formal semantics for RSML¢. Master’s thesis, Univer-
sity of Minnesota, May 2000.

(119] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, 1996.

[120] Pamela Zave. Four dark corners of requirements engineering. ACM Transactions
on Software Engineering and Methodology, 6(1):1-29, January 1997.

Appendix A

Standard Modules for RSML™°

In the new tool, the user will be able to specify files to be included (much like the
include directives in C++ or Java). This will allow a large and complex specification
to be divided into modules and allow these modules to be stored in separate files.
This will give a much finer grained version control than what we currently have with
a single monolithic file and it will also make it much easier to reuse and recombine
the module definitions.

This section defines the standard module include file to be used with the new
version of RSML ™. This file will be included at the bottom of most RSML™° speci-
fications and the users will have the opportunity to use all of the predefined module

definitions found here.

MODULE PREV :
INTERFACE :
GENERIC_TYPE G

IMPORT val : G
END IMPORT

IMPORT CONSTANT InitialValue : G
END IMPORT

IMPORT cond : Boolean
END IMPORT

IMPORT CONSTANT size : integer
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED
END IMPORT

193

EXPORT previousValue : G
END EXPORT

END INTERFACE
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF G
PARENT : NONE

ASSIGNMENT [1}

DEFAULT_VALUE : InitialValue

EQUALS val IF cond

EQUALS PRE(internal_arr ay[1]) IF NOT {(cond)
END ASSIGNMENT

ASSIGNMENT [2 TO size]
EQUALS internal_array([t his-1] IF cond
EQUALS pre(internal_arr ay[this]) IF NOT (cond)
END ASSIGNMENT
END STATE_VARIABLE

EXPORT previousValue
PARENT : NONE

EQUALS internal_array[size] IF TRUE
END EXPORT

END DEFINITION
END MODULE

MODULE PREV_VALUE

INTERFACE :
GENERIC_TYPE G

IMPORT Variable : G
END IMPORT

IMPORT CONSTANT InitialValue : G
END IMPORT

EXPORT PreviousValue : G
END EXPORT

194

195

END INTERFACE
DEFINITION :

EXPORT PreviousValue
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS PRE(PreviousValue) IF PRE(PreviousValue) = Variable
EQUALS PRE(Variable) IF PRE(PreviousValue) != Variable
END EXPORT

END DEFINITION

END MODULE

MODULE VALUE_AT_TIME

INTERFACE :
GENERIC_TYPE G

IMPORT SpecifiedTime : TIME
END IMPORT

IMPORT CurrentValue : G
END IMPORT

IMPORT CONSTANT InitialValue : G
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT Val : G
END EXPORT

END INTERFACE
DEFINITION

EXPORT Val :
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS Pre(Val) IF Clock != SpecifiedTime
EQUALS CurrentValue IF Clock = SpecifiedTime
END EXPORT

END DEFINITION

END MODULE

INTERFACE BooleanMonitor:
IMPORT Expr : BOOLEAN
END IMPORT

IMPORT CONSTANT InitialValue : BOOLEAN

END IMPORT

EXPORT Result : BOOLEAN
END EXPORT
END INTERFACE

MODULE WHEN : BooleanMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS True IF
TABLE
PRE(Expr) : F ;
Expr ;
END TABLE
EQUALS False IF
TABLE
PRE(Expr) : T
Expr : *x F
END TABLE
END EXPORT

—3

*

END DEFINITION
END MODULE

MODULE WHEN_NOT : BooleanMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS True IF
TABLE

196

197

PRE(Expr) : T ;
Expr : F
END TABLE
EQUALS False IF
TABLE
PRE(Expr) : F * ;
Expr o *x T
END TABLE
END EXPORT

*

END DEFINITION
END MODULE

INTERFACE GenericMonitor
GENERIC_TYPE G

IMPORT Expr : G
END IMPORT

EXPORT Result : BOOLEAN
END EXPORT

END INTERFACE

MODULE CHANGED : GenericMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : False
EQUALS Pre(Expr) != Expr
END EXPORT

END DEFINITION
END MODULE

MODULE UNCHANGED : GenericMonitor
DEFINITION:

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : False
EQUALS PRE(Expr) = Expr
END EXPORT

END DEFINITION
END MODULE

INTERFACE TimeMonitor
IMPORT Expr : BOOLEAN
END IMPORT

IMPORT CONSTANT InitialValue : TIME
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT Result : TIME
END EXPORT
END INTERFACE

MODULE TIME_CHANGED : TimeMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS Clock IF PRE(Expr) != Expr
EQUALS PRE(Result) IF PRE(Expr) = Expr
END EXPORT

END DEFINITION
END MODULE

MODULE TIME_WHEN : TimeMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS Clock IF

TABLE
PRE(Expr) : F ;
Expr HY
END TABLE
EQUALS PRE(Result) IF
TABLE
PRE(Expr) : T * ;
Expr : *x F ;
END TABLE

END EXPORT

198

199

END DEFINITION
END MODULE

MODULE TIME_WHEN_NOT : TimeMonitor
DEFINITION

EXPORT Result
PARENT : NONE
DEFAULT_VALUE : InitialValue
EQUALS Clock IF

TABLE
PRE(Expr) : T ;
Expr : F
END TABLE
EQUALS PRE(Result) IF
TABLE
PRE(Expr) : F * ;
Expr : x T
END TABLE
END EXPORT

END DEFINITION
END MODULE

MODULE DURATION : TimeMonitor
DEFINITION

STATE_VARIABLE InitialTime : TIME
PARENT : NONE
DEFAULT_VALUE : UNDEFINED
EQUALS Clock IF

TABLE
DEFINED(PRE(InitialTime)) F ;
PRE (Expr) : F
Expr : T,

END TABLE

EQUALS PRE(InitialTime) IF

TABLE
DEFINED(PRE(InitialTime)) : T * ;
PRE (Expr) :* T

END TABLE

EQUALS UNDEFINED IF Expr = False
END STATE_VARIABLE

EXPORT Result
PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS Clock - InitialTime IF DEFINED(InitialTime)

EQUALS InitialValue IF NOT (DEFINED(InitialTime))
END EXPORT

END DEFINITION
END MODULE
INTERFACE BooleanResultArr ayAggregate

IMPORT conditions : (1 TO size] OF BOOLEAN
END IMPORT

IMPORT CONSTANT size : INTEGER
END IMPORT

EXPORT result : BOOLEAN
END EXPORT

END INTERFACE

MODULE FORALL : BooleanResultArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF BOOLEAN

PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : size

ASSIGNMENT [1]
EQUALS conditions[this]
END ASSIGNMENT

ASSIGNMENT [2 TO size]
EQUALS True IF
TABLE
internal_array([this-1] T ;
conditions[this] : T
END TABLE
EQUALS False IF
TABLE
internal_array[this-1] : F * ;
conditions[this] : *x F
END TABLE
END ASSIGNMENT

200

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_array([size]
END EXPORT

END DEFINITION
END MODULE

MODULE EXISTS : BooleanResultArrayAggregate

DEFINITION

STATE_VARIABLE intermal_array :
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : size

ASSIGNMENT [1]
EQUALS conditions[this]
END ASSIGNMENT

ASSIGNMENT [2 TO size)
EQUALS True IF
TABLE
internal_array[this-1]
conditions[this]
END TABLE
EQUALS False IF
TABLE
internal_array[this-1]
conditions[this]
END TABLE
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_array([size]
END EXPORT

END DEFINITION
END MODULE

[1 TO size] OF BOOLEAN

T *x
T

: F

201

202

INTERFACE IntegerResultArr ayAggregate

IMPORT conditions : [1 TO size] OF BOOLEAN
END IMPORT

IMPORT CONSTANT size : INTEGER
END IMPORT

EXPORT result : BOOLEAN
END EXPORT

END INTERFACE

MODULE FIRST_INDEX : IntegerResultArrayAggregate
DEFINITICN

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : size

ASSIGNMENT [1]
EQUALS conditions[this] IF conditions[this]
EQUALS UNDEFINED IF NOT (conditions[this])
END ASSIGNMENT

ASSIGNMENT [2 TO size]
EQUALS this IF
TABLE
DEFINED(internal_array(this-1])
conditions[this] : T ;
END TABLE
EQUALS internal_array{this-1] IF
TABLE
DEFINED(internal_array(this-1])
conditions[this] : * T ;
END TABLE
END ASSIGNMENT

*ry

-3
*

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_array[size]
END EXPORT

203

END DEFINITION
END MODULE

MODULE LAST_INDEX : IntegerResultArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : size

ASSIGNMENT [sizel
EQUALS conditions[this] IF conditions[this]
EQUALS UNDEFINED IF NOT (conditions[this])
END ASSIGNMENT

ASSIGNMENT [1 TO size-1]
EQUALS this IF
TABLE
DEFINED(internal_array[this+1])
conditions[this] : T ;
END TABLE
EQUALS internal_array(this+1] IF
TABLE
DEFINED(internal_array[this+1])
conditions{this] : *x T
END TABLE
END ASSIGNMENT

]

]
*

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_array[1]
END EXPORT

END DEFINITION
END MODULE

MODULE COUNT : IntegerResultArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA

204

EXPECTED_MIN : 1
EXPECTED_MAX : size

ASSIGNMENT [1]
EQUALS 1 IF conditions[this]
EQUALS 0 IF NOT (conditions[this])
END ASSIGNMENT

ASSIGNMENT [2 TO sizel
EQUALS internal_array[t his-1] + 1 IF conditions[this]
EQUALS internal_array(t his-1] IF NOT (conditioms[this])
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_array[size]
END EXPORT

END DEFINITION
END MODULE

INTERFACE IntegerMathArray Aggregate

IMPORT vals : [1 TO size] of INTEGER
UNITS : NA
EXPECTED_MIN : UNDEFINED
EXPECTED_MAX : UNDEFINED

END IMPORT

IMPORT CONSTANT size : INTEGER
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

END IMPORT

EXPORT result : INTEGER
UNITS : NA
EXPECTED_MIN : UNDEFINED
EXPECTED_MAX : UNDEFINED
END EXPORT

END INTERFACE

205

MODULE SUM : IntegerMathAr rayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

ASSIGNMENT [1]
EQUALS vals([this]
END ASSIGNMENT

ASSIGNMENT [2 TO sizel
EQUALS vals[this] + intermal_array[this-1]
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_arrayl[size]
END EXPORT

END DEFINITION
END MODULE

MODULE AVERAGE : IntegerMathArrayAggregate
DEFINITION

EXPORT sumValue

PARENT : NONE

EQUALS SUM(vals, size)/size
END EXPORT

END DEFINITION
END MODULE

MODULE MAXIMUM : IntegerMathArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

206

ASSIGNMENT [1]
EQUALS vals[this]
END ASSIGNMENT

ASSIGNMENT [2 TO size]

EQUALS vals[this] IF vals[this] > internal_array[this-1]

EQUALS internal_array(this-1] IF vals{this] <= internal_array[this- 1]
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_arrayl[size]
END EXPORT

END DEFINITION
END MODULE

MODULE MINIMUM : IntegerMathArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

ASSIGNMENT [1]
EQUALS vals[this]
END ASSIGNMENT

ASSIGNMENT [2 TO size]

EQUALS vals[this] IF vals[this] < internal_array[this-1]

EQUALS internal_array([this-1] IF vals[this] >= internal_array[this- 1]
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS internal_arrayl[size]
END EXPORT

END DEFINITION
END MODULE

207

INTERFACE RealMathArrayAgg regate :

IMPORT vals : [1 TO size] of REAL
UNITS : NA
EXPECTED_MIN : UNDEFINED
EXPECTED_MAX : UNDEFINED

END IMPORT

IMPORT CONSTANT size : REAL
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED
END IMPORT

EXPORT result : REAL
UNITS : NA
EXPECTED_MIN : UNDEFINED
EXPECTED_MAX : UNDEFINED
END EXPORT

END INTERFACE

MODULE SUM_REAL : RealMathArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF REAL
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

ASSIGNMENT [1]
EQUALS vals[this]
END ASSIGNMENT

ASSIGNMENT [2 TO size]
EQUALS vals[this] + internal_array[this-1]
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_arrayl[size]
END EXPORT

208

END DEFINITION
END MODULE

MODULE AVERAGE_REAL : RealMathArrayAggregate
DEFINITION

EXPORT sumValue

PARENT : NONE

EQUALS SUM(vals, size)/size
END EXPORT

END DEFINITION
END MODULE

MODULE MAXIMUM_REAL : RealMathArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF REAL
PARENT : NONE
UNITS : NA
EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

ASSIGNMENT [1]
EQUALS vals(this]
END ASSIGNMENT

ASSIGNMENT [2 TO size]

EQUALS vals(this] IF vals[this] > internal_array[this-1]

EQUALS internal_array(this-1] IF vals[this] <= internal_array[this- 1]
END ASSIGNMENT

END STATE_VARIABLE
EXPORT result

PARENT : NONE

EQUALS internal_array[size]
END EXPORT

END DEFINITION
END MODULE

MODULE MINIMUM_REAL : RealMathArrayAggregate
DEFINITION

STATE_VARIABLE internal_array : [1 TO size] OF REAL

209

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1
EXPECTED_MAX : UNDEFINED

ASSIGNMENT [1]
EQUALS vals[this]
END ASSIGNMENT

ASSIGNMENT [2 TQ size]

EQUALS vals[this] IF vals[this] < internal_array[this-1]

EQUALS internal_array(this-1] IF vals(this] >= internal_array[this- 1]
END ASSIGNMENT

END STATE_VARIABLE

EXPORT result

PARENT : NONE

EQUALS intermal_arrayl[size]
END EXPORT

END DEFINITION
END MODULE

Appendix B

The ASW REQ Model (Phase 5)

INCLUDE "asw-alltypes.nimb us"
MODULE ASW_REQ_P5
INTERFACE

EXPORT CON_DOI_P5 : DOIControlledType
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). Lx*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be Off. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
L*&

Issues : &*L
\begin{myitemize}
\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?
\end{myitemize}
L*&

END EXPORT

210

211

EXPORT CON_Failure_P5 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item([False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure
conditions are true.
\end{mydescription}
\end{quote}
L*&
END EXPORT

IMPORT MON_Altitude_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 0O
EXPECTED_MAX : 50000
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

Interpretation : &x*L
\begin{quote}
\begin{mydescription}
\item[Precision:] We will know the altitude to within $\pm 10§ ft.
\end{mydescription}
\end{quote}
L&

END IMPORT

IMPORT MON_Altitude_Quality P5 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L*&
END IMPORT

212

IMPORT MON_DOI_P5 : OnOffType_P5
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI L*%

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT
IMPORT MON_Reset_P5 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the
value false. L*&

Interpretation : &=*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}
\end{quote}
Lx&

END IMPORT
IMPORT MON_Inhibit_P5 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and
false otherwise. The value is determined by the user and/or other
systems on board the aircraft. Lx&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been
inhibited; the ASW shall not attempt to change the status of the

213

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the
ASW will behave as specified by other requirements.
\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT CONSTANT Threshold_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. Lk

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure P5 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family
member. It is the length of time after which the ASW will
declare a failure if there is not valid altitude. L&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P5 : Time
UNITS : NA
EXPECTED_MIN 1s
EXPECTED_MAX : 5 s

Purpose : &+L This constant will be defined by each member of
the ASW family to represent the amount of time before the ASW
declares a failure if the DOI does not respond to a command. L*&
END IMPORT
IMPORT CONSTANT GoAboveAction PS5 : ActionType
Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L*&

END IMPORT
IMPORT CONSTANT GoBelowAction_P5 : ActionType

Purpose : &*L This constant specifies the action that the ASW
vill perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT
END INTERFACE
DEFINITION

STATE_VARIABLE ASW_System_Mode_P5
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L*&

DEFAULT_VALUE : Startup

214

215

TRANSITION NormalOperating TO Reset IF MON_Reset_P5
TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality P5 = Valid, 0 S, Clock) > 1 MIN

TRANSITION Reset TO NormalOperating IF
DURATION (PRE(ASW_System _Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P5
VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}
PARENT : NONE
Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functionmality
mode. Namely, whether or not we have seen two periods of
invalid altitude lasting 1 second or more within 1 minute. L&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF
DURATION (MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > 1 8

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) >18 : T ;
DURATION (PRE(EpisodeMon itor_P5) = FirstEpisode) > 1 S ¢ T
END TABLE

TRANSITION FirstEpisode TO NoEpisode IF
DURATION(PRE(EpisodeMon itor_P5) = FirstEpisode) >= 1 MIN

TRANSITION QualifyingEpisode TO NoEpisode IF
DURATION(MON_Altitude_Q uality P5 = Valid, O S, Clock) >= 2 MIN

END STATE_VARIABLE
MODULE_INSTANCE ASW_Operating Mode_P5 : ASW_0Operating_Mode_Def_P5

PARENT : ASW_System_Mode_P5.NormalOperating
ASSIGNMENT

216

MON_Altitude_P5S := MON_Altitude_P5,
MON_Altitude_Quality_P5 := MON_Altidue_Quality_P5,
MON_DOI_PS := MON_DOI_PS,
MON_Inhibit_P5 := MON_Inhibit_P5,
Threshold_P5 := Threshold_P5,
Invalid_Alt_Failure_P5 := Invalid_Alt_Failure_P5,
DOI_Timeout_P5 := DOI_Timeout_P5,
GoAboveAction_P5 := GoAboveAction_P5,
GoBelowAction_P5 := GoBelowAction_P5,
GoAboveHyst_P5 := GoAboveHyst_PS5,
GoBelowHyst_P5 := GoBelowHyst_P5,
DOI_Delay_P5 =08

END ASSIGNMENT
END MODULE_INSTANCE

MODULE_INSTANCE ASW_Degraded_Mode_P5 : ASW_Operating Mode_Def_P5
PARENT : ASW_System_Mode_P5.Degraded

ASSIGNMENT
MON_Altitude_P5 := MON_Altitude_P5,
MON_Altitude_Quality P5 := MON_Altidue_Quality_P5,
MON_DOI_PS := MON_DOI_PS,
MON_Inhibit_PS := MON_Inhibit_P5,
Threshold_P5 := Threshold_P5,
Invalid_Alt_Failure_P5 := Invalid_Alt_Failure_P5,
DOI_Timeout_P5 := DOI_Timeout_P5,
GoAboveAction_P5 := GoAboveAction_P5,
GoBelowAction_P5 := GoBelowAction_P5,
GoAboveHyst_P5 := GoAboveHyst_P5,
GoBelowHyst_P5 := GoBelowHyst_PS5,
DOI_MinDelay_P5 = 2 8,
DOI_MaxDelay_P5 =68

END ASSIGNMENT
END MODULE_INSTANCE

EXPORT CON_DOI_P5
PARENT : NONE
DEFAULT_VALUE : Uncontrolled

EQUALS ASW_Operating Mode_ P5.CON_DOI_PS
IF ASW_System_Mode PS5 = NormalOperating

EQUALS ASW_Degraded_Mode_P 5.CON_DOI_P5
IF ASW_System_Mode_P5 = Degraded

EQUALS Uncontrolled IF
TABLE
ASW_System_Mode_P5 = Failed : T * ;

ASW_System_Mode_P5 = Reset : * T ;
END TABLE

END EXPORT

EXPORT CON_Failure_P5
PARENT : NONE
DEFAULT_VALUE : False

TRANSITION False TO True IF
TABLE
ASW_System_Mode_P5 = NormalOperating
ASW_Operating_Mode_P5.C ON_Failure_P5
ASW_System_Mode_P5 = Degraded
ASW_Operating_Mode_P5.C ON_Failure_ P5
END TABLE

* ¥ 34
- % ®

TRANSITION True TO False IF ASW_System_Mode_P5 Reset
END EXPORT
END DEFINITION

END MODULE

MODULE ASW_OperatingMode_D ef_P5 :
INTERFACE :

EXPORT CON_DOI_P5 : DOIControlledType
END EXPORT

EXPORT CON_Failure_P5 : Boolean
END EXPORT

IMPORT MON_Altitude_P5 : INTEGER
END IMPORT

IMPORT MON_Altitude_Quality P5 : AltitudeQualityType
END IMPORT

IMPORT MON_DOI_PS5 : OnOffType_P5
END IMPORT

IMPORT MON_Inhibit_P5 : Boolean
END IMPORT

217

IMPORT CONSTANT
UNITS : f¢t
EXPECTED_MIN
EXPECTED_MAX

END IMPORT

IMPORT CONSTANT
UNITS : NA
EXPECTED_MIN
EXPECTED_MAX

END IMPORT

IMPORT CONSTANT
UNITS : NA
EXPECTED_MIN
EXPECTED_MAX

END IMPORT

IMPORT CONSTANT
END IMPORT

IMPORT CONSTANT
END IMPORT

IMPORT CONSTANT
UNITS : ft
EXPECTED_MIN
EXPECTED_MAX

END IMPORT

IMPORT CONSTANT
UNITS : ft
EXPECTED_MIN
EXPECTED_MAX

END IMPORT

1
: B

Threshold_P5 : INTEGER

: 0
1 8024

Invalid _Alt_Failure_P5

: 28

10 s

DOI_Timeout_P5 : Time

]
s

: Time

GoAboveAction_P5 : ActionType

GoBelowAction_P5 : ActionType

GoAboveHyst_PS : INTEGER
: 50
: 500
GoBelowHyst_P5 : INTEGER

: B0
: 500

IMPORT DOI_MinDelay P5 : TIME

Purpose : &*L This parameter to the ASW operating module
determines whether or not we will wait to turn the DOI on.
is greater than zero, then we will wait.

minium waiting time L*&

END IMPORT

IMPORT DOI_MaxDelay_P5 : TIME

It represents the

218

219

Purpose : &*L This parameter to the ASW operating module
determines the maximum waiting time that we will stay in a
Delayed action state before giving up and returning to NoAction
L*&

END IMPORT
END INTERFACE
DEFINITION

EXPORT CON_DOI_PS
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF
TABLE
GoBelowAction = TurnOn
ActionBelow_P5.PerformA ction_P5
GoAboveAction = TurnOn
ActionAbove_P5.PerformA ction_P5
END TABLE

* % -1]
o B IR S

TRANSITION Uncommanded TO Off IF
TABLE
GoBelowAction = TurnOff
ActionBelow_P5.PerformA ction_PS
GoAboveAction = TurnOff
ActionAbove_P5.PerformA ction_P5
END TABLE

* ¥
- 3 % »®

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P5 = On, False)
TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P5 = 0ff, False)
END EXPORT

MODULE_INSTANCE ActionBelow_P5 : DOI_Action_P5
PARENT : NONE

ASSIGNMENT
Direction_P5 := Dowm,
ThresholdedAltitude_P5 := ThresholdedAlt_P5.Result_P5,
MinDelay_P5 := DOI_MinDelay_P5,
MaxDelay_P5 := DOI_MaxDelay_P5,
AltitudeQuality_P5 := MON_AlitudeQuality_P5,

ActionOK_P5 := DOI_Action_Ok_P5(),

Clock := Clock
END ASSIGNMENT
END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P5 : DOI_Action_P5
PARENT : NONE

ASSIGNMENT
Direction_P5 := Up,
ThresholdedAltitude_PS5 := ThresholdedAlt_P5.Result_P5,
MinDelay_P5 := DOI_MinDelay_P5,
MaxDelay_P5 := DOI_MaxDelay_P5,
AltitudeQuality_PS := MON_AlitudeQuality_PS5,
ActionOK_P5 := DOI_Action_Ok_P5(),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MACRO DOI_Action_Ok_P5(act IS ActionType)
TABLE

MON_Inhibit_P5 : FF;
CON_Failure_P5 : FF;
MON_DOI_PS5 = On : T x
act = On : F x
MON_DOI_PS = Off : *x T
act = Off HEE 3 S
END TABLE
END MACRO

EXPORT CON_Failure_P5
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE
DURATION (AttemptingOn() , 0 S, Clock) > DOI_Timeout_P5
DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5
DURATION(MON_Altitude_Q vality_P5 = Invalid, O S, Clock)
PRE(CON_Failure_P5) = False
END TABLE

EQUALS FALSE IF
TABLE
DURATION(AttemptingOn(} , 0 S, Clock) > DOI_Timeout_P5
DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5
DURATION(MON_Altitude_Q uality_P5 = Invalid, O S, Clock)
PRE(CON_Failure_P5) = False
END TABLE

* * % =3
* * 1 *
* = * *

mmmm

[IR R I 3

220

221

END EXPORT

MACRO AttemptingOn()

TABLE
MON_DOI_PS5 = Off : T
CON_DOI_P5 = On : T
END TABLE
END MACRO

MACRO AttemptingOff ()

TABLE
MON_DOI_P5 = On : T
CON_DOI_PS = Off T
END TABLE
END MACRO

MODULE_INSTANCE ThresholdedAlt_P5 : ThresholdedAltitude_P5
PARENT : NONE
ASSIGNMENT
Altitude P5 := MON_Altitude_P5,
Threshold_P5 := Threshold_P5,
BelowHysteresis_P5 := GoBelowHyst_P5,
AboveHysteresis_P5 := GoBelowHyst_P5
END ASSIGNMENT
END MODULE_INSTANCE

END DEFINITION

END MODULE

MODULE ThresholdedAltitude _P5 :
INTERFACE

IMPORT Altitude_P5 : Integer
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P5 : Integer
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

222

IMPORT CONSTANT AboveHysteresis_P5 : Integer
UNITS : ft
EXPECTED_MIN : S50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P5 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P5 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is
above or below the threshold given the hysteresis factor L&

END EXPORT
END INTERFACE
DEFINITION

EXPORT Result_P5
PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE
DEFINED(Altitude_PS5) T
Altitude_P5 > Threshold_P5 T ;
END TABLE
DEFAULT_VALUE : Below IF
TABLE
DEFINED(Altitude_P5) : T ;
Altitude_P5 <= Threshold_P5 : T ;
END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P5))

EQUALS Above IF
TABLE
DEFINED(Altitude_P5) : T,
Altitude_P5 > EffectiveThreshold PS5 : T ;
END TABLE

223

EQUALS Below IF

TABLE
DEFINED(Altitude_P5) T ;
Altitude_P5 <= EffectiveThreshold P5 : T ;
END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P5))
END EXPORT

STATE_VARIABLE ApplyHisteresis_P5
VALUES : {NoHyst, Above, Below}
PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF
TABLE
DEFINED(Altitude_P5) : T ;
WHEN(Altitude_P5 < Threshold_P5, False) ;
END TABLE

-3

TRANSITION NoHyst TO Below IF
TABLE
DEFINED(Altitude_P5) T
WHEN(Altitude_P5 > Threshold_P5, False) ;
END TABLE

-3

TRANSITION Above TO NoHyst IF
TABLE
DEFINED(Altitude_PS) : TT ;
WHEN(Altitude_P5 < Threshold_P5 + AboveHysteresis_P5, False) : ;
WHEN(Altitude_P5 > Threshold_P5 - BelowHysteresis_P5, False) : * T ;

-3
*

END TABLE

TRANSITION Below TO NoHyst IF
TABLE
DEFINED(Altitude_P5) :
WHEN(Altitude_P5 > Threshold_P5 + AboveHysteresis_P5, False) : T ;
WHEN(Altitude_P5 < Threshold_P5 BelowHysteresis_P5, False) : * T ;

-3
* -

END TABLE
END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold PS5 : INTEGER
PARENT : NONE

224

UNITS : ft

EXPECTED_MIN : Threshold_P5 - BelowHysteresis_P5
EXPECTED_MAX : Threshold_P5 + AboveHysteresis_P5
DEFAULT_VALUE : Threshold_P5

EQUALS Threshold_ PS5 + AboveHysteresis_P5
IF ApplyHysteresis_P5 = Above

EQUALS Threshold_P5 - BelowHysteresis_P5
IF ApplyHysteresis_P5 = Below

EQUALS Threshold_PS
IF ApplyHysteresis_P5 = NoHyst

END STATE_VARIABLE
END DEFINITION
END MODULE
MODULE DOI_Action_P5
INTERFACE

IMPORT MinDelay P5 : TIME
END IMPORT

IMPORT MaxDelay P5 : TIME
END IMPORT

IMPORT CONSTANT Direction_P5 : UpDownType
END IMPORT

IMPORT ThresholdedAltit ude_P5 : AboveBelowType
END IMPORT

IMPORT AltitudeQuality_P5 : AltitudeQualityType
END IMPORT

IMPORT Action0OK_P5 : Boolean
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT PerformAction_P5 : Boolean

225

END EXPORT
END INTERFACE
DEFINITION

EXPORT PerformAction_P5

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)
END EXPORT

STATE_VARIABLE internal _P5 :
VALUES : {NoAction, Delayed, Perform}
PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE
MinDelay P5 > 0 §
ActionOK_P5
WHEN (ThresholdedAltitud e_P5
Direction_P5 = Below
WHEN (ThresholdedAltitud e_P5
Direction_P5 = Above

END TABLE

Below)

Above)

* ¥ 1 = =]
= R I I

TRANSITION NoAction TO Peform IF

TABLE
MinDelay P5 > 0 8
ActionQOK_P5
WHEN(ThresholdedAltitud e_P5
Direction_P5 = Down
WHEN (ThresholdedAltitud e_P5
Direction_P5 = Up

END TABLE

Below)

Above)

* %« = '
-1 3 * ¥ 9T

TRANSITION Delayed TO Perform IF
TABLE
DURATION(PRE(internal_P 5) IN_STATE Delayed,
0 S, Clock) >= MinDelay_P5
ActionOK_PS
AltitudeQuality_P5 = Valid
Direction_PS5 = Down
ThresholdedAltitude_P5 = Below
Direction_P5 = Up

* - 13-
- o* ¥ - -

226

ThresholdedAltitude_P5 = Above :x T
END TABLE

TRANSITION Delayed TO NoAction IF
DURATION(PRE(internal P 5) IN_STATE Delayed, 0 S, Clock) >= MaxDelay_PS

TRANSITION Perform TO NoAction IF
DURATION(PRE(internal P 5) IN_STATE Perform, 0 S, Clock) >= 0 S

END STATE_VARIABLE
END DEFINITION
END MODULE

INCLUDE "standard-modules. nimbus"

Appendix C

The ASW SOFT Model (Phase 6)

/*L

In this chapter, we add to the REQ specification for the ASW a
specification of the ASW’s IN’ and OUT’ relations. These relations
are developed in a similar way to the REQ relation, but starting out
at a high level and then refining the structure and computation,
finally taking into consideration completeness and error handling
constraints.

For this Phase, we will be defining a number of new modules. The
Altimeters_IN_P6 module will transform the inputs from the digital altimeters

Lx/

INCLUDE "asw-alltypes.nimb us"

MODULE Altimeters_IN_P6
INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : 0
EXPECTED_MAX : 10

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER
UNITS : NA
EXPECTED_MIN : O
EXPECTED_MAX : 10

END IMPORT

IMPORT DigialAlt_P6 : (1 TO NumDigitalAlt] OF INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 50000

END IMPORT

227

228

IMPORT CONSTANT Threshold_P6 : INTEGER
END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [1 TO NumAnalogAlt] OF AboveBelowType
END IMPORT

IMPORT DigitalQuality_P6 : [1 TO NumDigitalAlt] OF AltitudeQualityType
END IMPORT

IMPORT AnalogQuality P6 : [1 TO NumAnalogAlt] OF AltitudeQualityType
END IMPORT

IMPORT INTERFACE AltitudeVoter_P6
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType
END EXPORT

END INTERFACE
DEFINITION

MODULE_INSTANCE ThresholdedDigital_P6

[1 TO NumDigitalAlt] OF ThresholdedAltitude_ P&

PARENT : NONE

ASSIGNMENT
Altitude_P6
Threshold_P6

AboveHysteresis_P6

BelowHysteresis_P6

END ASSIGNMENT

END MODULE_INSTANCE

DigitalAlt_P6,

EXTEND Threshold_P6 TO

[1 TO NumDigitalAlt] OF INTEGER,
EXTEND GoAboveHyst_P6 TO

[1 TO NumDigitalAlt] OF INTEGER,
EXTEND GoBelowHyst_P6 TO

[1 TO NumDigitalAlt] OF INTEGER

SLOT_INSTANCE AltitudeVoter_P6

ASSIGNMENT
Num_of_Alt
Altitudes
Qualities

END ASSIGNMENT

END SLOT_INSTANCE

EXPORT Altitude_P6
PARENT : NONE
DEFAULT_VALUE

NumDigitalAlt_P6 + NumAnalogAlt_P6,

ThresholdedDigital P6.Result_P6 | AnalogAlt_P6,

DigitialQuality P6 | AnalogQuality_P6

: AltitudeVoter_P6.Altitude_P6

EQUALS AltitudeVoter_P6.Al titude_P6

END EXPORT

EXPORT AltitudeQuality_P6 :

PARENT : NONE
DEFAULT_VALUE

: AltitudeVoter_P6.AltitudeQuality_ P6

EQUALS AltitudeVoter_P6.Al titudeQuality_P6

END EXPORT

END DEFINITION

END MODULE

INTERFACE AltitudeVoter_P6

IMPORT CONSTANT Num_of _Alt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : O

EXPECTED_MAX : 50O
END IMPORT

IMPORT Altitudes_P6

[1 TO Num_of_Alt_P6] OF AboveBelowType

229

230

END IMPORT

IMPORT Qualities_P6 : [1 TO Num_of _Alt_P6] OF AltitudeQualityType
END IMPORT

EXPORT Altitude_P6 : AboveBelowType
END EXPORT

EXPORT Quality_P6 : AltitudeQualityType
END EXPORT

END INTERFACE
MODULE Alt_and_Quality P6
INTERFACE

IMPORT Altitude_P6 : AboveBelowType
END IMPORT

IMPORT Quality_P6 : AltitudeQualityType
END IMPORT

EXPORT Result : Alt_and_QualityType
END EXPORT

END INTERFACE
DEFINITION

EXPORT Alt_and_QualityT ype :
PARENT : NONE

EQUALS Above IF
TABLE

Altitude_P6 = Above : T ;
Quality_P6 = Valid : T ;
END TABLE
EQUALS Below IF
TABLE
Altitude_P6 = Below : T ;
Quality_P6 = Valid : T ;

END TABLE

EQUALS Invaid IF Quality_P6 = Invalid

END EXPORT
END DEFINITION
END MODULE
MODULE Most_P6 : AltitudeVoter_P6
DEFINITION

EXPORT Altitude_P6
PARENT : NONE

DEFAULT_VALUE : Below

EQUALS Below IF
COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO
(1 TO Num_of_Alt_P6] OF AltitudeQualityType =
EXTEND Below TO
(1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
>
COUNT (EXTEND Alt_and_Quali ty_P6(Altitudes_P6, Qualities_P6) TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType =
EXTEND Above TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

EQUALS Above IF
COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO
[1 TO Num_of _Alt_P6] OF AltitudeQualityType =
EXTEND Below TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
<=
COUNT (EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P€) TO
[1 TO Num_of Alt_P6] OF AltitudeQualityType =
EXTEND Above TO
[1 TO Num_of _Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6
PARENT : NONE
DEFAULT_VALUE : Valid

EQUALS Valid IF
EXISTS(Qualities_P6 = EXTEND Valid TO
[1 TO Num_of_Alt_P6)} OF AltitudeQualityType, Num_of_Alt_P6)

231

EQUALS Invalid IF
FORALL(Qualities_P6 = EXTEND Invalid TO
[1 TO Num_of _Alt_P6] OF AltitudeQualityType,
END EXPORT
END DEFINITION
END MODULE
MODULE AnyCrossed_P6 : AltitudeVoter_ P6

DEFINITION

EXPORT Altitude_P6
PARENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

Num_of_Alt_P6)

[1 TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Above TO

[1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

TRANSITION Above TO Below IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P§,

Qualities_P6) TO

[1 TO Num_of_Alt_P6) OF AltitudeQualityType =

EXTEND Below TO

[1 TO Num_of_Alt_P6] OF AltitudeQualityType,

END EXPORT

EXPORT Quality_P6
PARENT : NONE

EQUALS Valid IF
EXISTS(Qualities_P6 = EXTEND Valid TO

[1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF
FORALL(Qualities_P6 = EXTEND Invalid TO

[1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

END EXPORT

Num_of_Alt_P6)

232

END DEFINITION

END MODULE

MODULE AllCrossed_P6 : AltitideVoter_P6
DEFINITION

EXPORT Altitude_P6
PARENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF
FORALL(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType =
EXTEND Above TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

TRANSITION Above TO Below IF
FORALL(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO
[1 TO Num_of_Alt_P6] OF AltitudeQualityType =
EXTEND Below TO
(1 TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)
END EXPORT

EXPORT Quality_P6
PARENT : NONE

EQUALS Valid IF
EXISTS(Qualities_P6 = EXTEND Valid TO
[1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)
EQUALS Invalid IF
FORALL(Qualities_P6 = EXTEND Invalid TO
[1 TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)
END EXPORT
END DEFINITION

END MODULE

MODULE Failure_QUT_P6

233

234

INTERFACE :

IMPORT Failure_P6 : Boolean
END IMPORT

IMPORT Pulselnterval_P6 : TIME
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT Watchdog_ Pulse P6 : Boolean
END EXPORT

END INTERFACE
DEFINITION

EXPORT Watchdog_Pulse_P6 :
PARENT : NONE

DEFAULT_VALUE : false

TRANSITION False TO True IF

TABLE
DURATION(PRE (Watchdog_P ulse_P6) IN_STATE False,
0 S, Clock) >= Pulselnterval_P6 : T
Failure_P6 : F
END TABLE

TRANSITION True TO False IF
DURATION(PRE(Watchdog_P ulse_P6) IN_STATE True, 0 S, Clock) >= 0 S

END EXPORT
END DEFINITION

END MODULE

MODULE ASW_REQ_P6

INTERFACE

EXPORT CON_DOI_P6 : DOIControlledType
Purpose : &*L This variable represents the ASW’s
commanded status of the Device of Interest (DOI). L*&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[On:] Indicates that the DOI is commanded to be On. The DOI
is commanded to be on when the aircraft enters the target region
for turning the DOI on, the DOI is not already on,
and the ASW is not inhibitied.
\item[0ff:] Indicates that the DOI is commanded to be Off. The
DOI is commanded to be off when the aircraft leaves the target
region and after a certain period of time has passed. If this
time is \RUndefined, then the ASW will never turn the DOI Off.
\item[Uncommanded:] Indicates that the DOI is not commanded by the
ASW. This CON_DOI variable will be equal to Uncommanded in any
step were the ASW does not issue a command to the device of interest.
\end{mydescription}
\end{quote}
L*&

Issues : &*L
\begin{myitemize}
\item If the aircraft leaves the target area and the DOI is on,
but was {\em not} commanded to be on by the ASW, should the ASW
turn it off?
\end{myitemize}
L&

END EXPORT

EXPORT CON_Failure P6 : Boolean

Purpose : &*L This variable represents the ASW’s indication of
whether or not it has failed to the external world. It is
potentially displayed to the pilot and/or used by other subsystems
on board the aircraft. L*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the ASW has failed. The ASW is
considered to be failed if it attempts to turn on the DOI, but the
DOI does not turn on after a certain timeout period.
\item[False:] Indicates that the ASW has not failed. The ASW is
considered to be operating normally if none of the failure

235

236

conditions are true.
\end{mydescription}
\end{quote}
L&

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType
CLASSIFICATION : Monitored

Purpose : &xL This variable represents the ASW’s idea of what the
altitude of the aircraft is. It is related to the Altitude_Quality
variable. L*&

END IMPORT

IMPORT MON_Altitude_Quality_P6 : AltitudeQualityType
CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the
Altitude of the aircraft is. L*&
END IMPORT

IMPORT MON_DOI_P6 : OnOffType_P6
Purpose : &*L This variable indicates the monitored status of the
DOI. The DOI can be turned on or off by other devices/systems on
board the aircraft, so the ASW needs an accurate accounting of the
status of the DOI Lx*&

Interpretation : &*L
\begin{quote}
\begin{mydescription}
\item([On:] Indicates that the DOI is currently on.
\item[0ff:] Indicates that the DOI is currently off.
\end{mydescription}
\end{quote}
L*&

END IMPORT

IMPORT MON_Reset_P6 : Boolean
Purpose : &*L This variable indicates the whether the ASW should be
reset or not. In a step where the ASW is reset, this variable will
have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L
\begin{quote}

\begin{mydescription}

\item([True:] Indicates that the ASW as been reset.
\item[False:] Indicates that the ASW has not been reset.
\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P6 : Boolean

Purpose : &+L This variable is true when the ASW is inhibited and
false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Interpretation : &=L
\begin{quote}
\begin{mydescription}
\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.
\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family
member when the REQ module is instantiated. It is the altitude
at which the ASW is required to turn on or off the ASW. Lx&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family
member. It is the length of time after which the ASW will

237

238

declare a failure if there is not valid altitude. Lx*&
END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time
UNITS : NA
EXPECTED_MIN 1s
EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of
the ASW family to represent the amount of time before the ASW
declares a failure if the DOI does not respond to a command. Lx&

END IMPORT
IMPORT CONSTANT GoAboveAction_P6 : ActionType
Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is
specified by the decision model for each family member. L&

END IMPORT
IMPORT CONSTANT GoBelowAction_P6 : ActionType
Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is
specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above
the threshold altitude. Lx*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

239

the threshold altitude. Lx*&
END IMPORT
END INTERFACE
DEFINITION

STATE_VARIABLE ASW_System_Mode_P6
VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}
PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW
were to have a startup mode, etc., we could put those modes as
children of this controlling mode. Currently, we have only two
states, the reset mode which is used for when the reset signal
is received and the operating mode that handles the main
behavior. L*&

DEFAULT_VALUE : Startup
TRANSITION NormalOperating TO Reset IF MON_Reset_P6
TRANSITION Degraded TO Reset IF MON_Reset_P6

TRANSITION NormalOperating TO Degraded IF
EpisodeMonitor_P6 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF
DURATION (MON_Altitude_Quality_P6 = Valid, 0 S, Clock) > 1 MIN

TRANSITION Reset TO NormalOperating IF
DURATION (PRE(ASW_System _Mode_P6)}, 0 s, Clock) >= 0 8

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P6
VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}
PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not
we have met the conditions for being in degraded functionality
mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

240

TRANSITION NoEpisode TO FirstEpisode IF
DURATION(MON_Altitude_Q uality_P6 = Invalid, O S, Clock) > 1 S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE
DURATION(MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock) > 1 8 : T ;
DURATION(PRE (EpisodeMon itor_P6) = FirstEpisode) > 1 S : T
END TABLE

TRANSITION FirstEpisode TO NoEpisode IF
DURATION(PRE(EpisodeMon itor_P6) = FirstEpisode) >= 1 MIN

TRANSITION QualifyingEpisode TO NoEpisode IF
DURATION(MON_Altitude_Q uality_P6 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P6 : ASW_Operating_Mode_Def_P6
PARENT : ASW_System_Mode_ P6.NormalOperating

ASSIGNMENT
MON_Altitude_P6 := MON_Altitude_P6,
MON_Altitude_Quality_P6 := MON_Altidue_Quality_P6,
MON_DOI_P6 := MON_DOI_PS6,
MON_Inhibit_P6 := MON_Inhibit_P§6,
Threshold_P6 := Threshold_P6,
Invalid_Alt_Failure P6 := Invalid_Alt_Failure_P6,
DOI_Timeout_P6 := DOI_Timeout_P6,
GoAboveAction_P6 := GoAboveAction_P6,
GoBelowAction_P6 := GoBelowAction_P6,
GoAboveHyst_P6 := GoAboveHyst_P6,
GoBelowHyst_P6 := GoBelowHyst_P6,
DOI_Delay_P6 =08

END ASSIGNMENT
END MODULE_INSTANCE

MODULE_INSTANCE ASW_Degraded_Mode_P6 : ASW_Operating Mode_Def P6
PARENT : ASW_System_Mode_P6.Degraded

ASSIGNMENT
MON_Altitude_P6 := MON_Altitude_P6,
MON_Altitude_Quality_P6 := MON_Altidue_Quality_PS6,
MON_DOI_P6 := MON_DOI_PS6,
MON_Inhibit_P6 := MON_Inhibit_P§6,
Threshold_P6 := Threshold_P6,
Invalid_Alt_Failure_P6 := Invalid_Alt_Failure_P6,
DOI_Timeout _P6 := DOI_Timeout_P6,
GoAboveAction_P6 := GoAboveAction_P6,

GoBelowAction_P6 := GoBelowAction_P6,

241

GoAboveHyst_P6 GoAboveHyst_P6,
GoBelowHyst_P6 GoBelowHyst_P6,
DOI_MinDelay_P6& =28,
DOI_MaxDelay_P6 65
END ASSIGNMENT
END MODULE_INSTANCE

EXPORT CON_DOI_P6
PARENT : NONE
DEFAULT_VALUE : Uncontrolled

EQUALS ASW_Operating_Mode_ P&.CON_DOI_P6
IF ASW_System_Mode_P6 = NormalOperating

EQUALS ASW_Degraded_Mode_P 6.CON_DOI_P6
IF ASW_System_Mode_P6 = Degraded

EQUALS Uncontrolled IF
TABLE
ASW_System_Mode_P6 = Failed : T * ;
ASW_System_Mode_P6 = Reset : * T ;
END TABLE

END EXPORT

EXPORT CON_Failure_P6
PARENT : NONE
DEFAULT_VALUE : False

TRANSITION False TO True IF
TABLE
ASW_System_Mode_P6 = NormalOperating
ASW_Operating_Mode_P6.C ON_Failure_P6
ASW_System_Mode_P6 = Degraded
ASW_Operating_Mode_P6.C ON_Failure_P6
END TABLE

* % -1 4
[B I R

TRANSITION True TO False IF ASW_System_Mode_P6 Reset
END EXPORT
END DEFINITION

END MODULE

MODULE ASW_OperatingMode D ef_P6 :

242

INTERFACE :

EXPORT CON_DOI_P6 : DOIControlledType
END EXPORT

EXPORT CON_Failure_P6 : Boolean
END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType
END IMPORT

IMPORT MON_Altitude_Quality _P6 : AltitudeQualityType
END IMPORT

IMPORT MON_DOI_P6 : OnOffType_P6
END IMPORT

IMPORT MON_Inhibit_P6 : Boolean
END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : O
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time
UNITS : NA
EXPECTED_MIN : 2 s
EXPECTED_MAX : 10 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time
UNITS : NA
EXPECTED_MIN 1
EXPECTED_MAX : 5

END IMPORT

s
s
IMPORT CONSTANT GoAboveAction_P6 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P6 : ActionType
END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft

243

EXPECTED_MIN : 50
EXPECTED_MAX : 500
END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay P6 : TIME

Purpose : &+L This parameter to the ASW operating module
determines whether or not we will wait to turn the DOI on. If it
is greater than zero, then we will wait. It represents the
minium waiting time L*&

END IMPORT
IMPORT DOI_MaxDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module
determines the maximum waiting time that we will stay in a
Delayed action state before giving up and returning to NoAction
L*&

END IMPORT
END INTERFACE
DEFINITION

EXPORT CON_DOI_P6
PARENT : NONE
DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF
TABLE
GoBelowAction = TurnOn
ActionBelow_P6.PerformA ction_P6
GoAboveAction = TurnOn
ActionAbove_P6.PerformA ction_P6
END TABLE

* * 14
e B IR

TRANSITION Uncommanded TO Off IF
TABLE
GoBelowAction = TurnOff : T *

244

ActionBelow_P6.PerformA ction_P6 T *

GoAboveAction = TurnOff : *« T

ActionAbove_P6.PerformA ction_P6 : % T
END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P6 = On, False)
TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P6 = 0ff, False)
END EXPORT

MODULE_INSTANCE ActionBelow_P6 : DOI_Action_P6
PARENT : NONE

ASSIGNMENT
Direction_P6 := Down,
ThresholdedAltitude_P6 := MON_Altitude_P6,
MinDelay_P6 := DOI_MinDelay_P6,
MaxDelay_P6 := DOI_MaxDelay_P6,
AltitudeQuality_P6 := MON_AlitudeQuality_P6,
ActionOK_P6 ;= DOI_Action_0k_P6(),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P6 : DOI_Action_P6
PARENT : NONE

ASSIGNMENT
Direction_P6 := Up,
ThresholdedAltitude_P6 := MON_Altitude_P6,
MinDelay_P6 := DOI_MinDelay_P6,
MaxDelay_P6 := DOI_MaxDelay_P6,
AltitudeQuality_P6 := MON_AlitudeQuality_P6,
ActionOK_P6 := DOI_Action_Ok_P6(Q),
Clock := Clock

END ASSIGNMENT
END MODULE_INSTANCE

MACRO DOI_Action_Ok_P6(act IS ActionType)
TABLE

MON_Inhibit_P6 FF;

CON_Failure_P6 FF;

MON_DOI_P6 = On T *

act = On F * ;

MON_DOI_P6 = 0ff * T

act = 0Off * F ;
END TABLE

END MACRO

EXPORT CON_Failure_P6
PARENT : NONE
DEFAULT_VALUE : False

EQUALS TRUE IF
TABLE
DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P6
DURATION(Attempting0ff(), O S, Clock) > DOI_Timeout_P6
DURATION (MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock)
PRE(CON_Failure_P6) = False
END TABLE

EQUALS FALSE IF
TABLE
DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P§
DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6
DURATION(MON_Altitude_Q uality_P6 = Invalid, O S, Clock)
PRE(CON_Failure_P6) = False
END TABLE

END EXPORT

MACRO AttemptingOn()

TABLE
MON_DOI_P6 = 0ff : T ;
CON_DOI_P6 = Omn : T
END TABLE
END MACRO

MACRO AttemptingOff()

TABLE
MON_DQOI_P6 = On : T
CON_DOI_P6 = Off : T
END TABLE
END MACRO

END DEFINITION

END MODULE

MODULE ThresholdedAltitude _P6 :
INTERFACE :

IMPORT Altitude_P6 : Integer

* o ¥
* % =] *

o omom

* %
* %
T *
* T ;

245

246

UNITS : ft

EXPECTED_MIN : O

EXPECTED_MAX : 50000
END IMPORT

IMPORT CONSTANT Threshold_P6 : Integer
UNITS : ft
EXPECTED_MIN : 0
EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P6 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P6 : Integer
UNITS : ft
EXPECTED_MIN : 50
EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P6 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is
above or below the threshold given the hysteresis factor L*&

END EXPORT
END INTERFACE
DEFINITION

EXPORT Result_P6
PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE
DEFINED(Altitude_P6) : T ;
Altitude_P6 > Threshold P6 : T ;
END TABLE

DEFAULT_VALUE : Below IF
TABLE
DEFINED(Altitude_P6) : T ;
Altitude_P6 <= Threshold_P6 : T ;

END TABLE
DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P6))

EQUALS Above IF

TABLE
DEFINED(Altitude_P6) : T ;
Altitude_P6 > EffectiveThreshold P6 : T ;
END TABLE

EQUALS Below IF

TABLE
DEFINED(Altitude_P6) : T
Altitude_P6 <= EffectiveThreshold P§ : T ;
END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P6))
END EXPORT

STATE_VARIABLE ApplyHisteresis_P6
VALUES : {NoHyst, Above, Below}
PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF
TABLE
DEFINED(Altitude_P6) :
WHEN(Altitude_P6 < Threshold_P6, False) : T ;
END TABLE

-

TRANSITION NoHyst TO Below IF

TABLE
DEFINED(Altitude_P6) : T ;
WHEN (Altitude_P6 > Threshold_P6, False) : T ;
END TABLE

TRANSITION Above TO NoHyst IF
TABLE
DEFINED (Altitude_P6)

WHEN(Altitude_P6 < Threshold _P6 + AboveHysteresis_P6,
WHEN(Altitude_P6 > Threshold P6 - BelowHysteresis_P6,

END TABLE

TRANSITION Below TO NeoHyst IF

False)
False)

247

TABLE
DEFINED (Altitude_P6)
WHEN(Altitude_P6 > Threshold_P6 + AboveHysteresis_P§,
WHEN(Altitude_P6 < Threshold_P6 - BelowHysteresis_P§,

END TABLE
END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P6 : INTEGER
PARENT : NONE
UNITS : ft
EXPECTED_MIN : Threshold _P6 - BelowHysteresis_P6
EXPECTED_MAX : Threshold_P6 + AboveHysteresis_P6
DEFAULT_VALUE : Threshold_P6

EQUALS Threshold_P6 + AboveHysteresis_P6
IF ApplyHysteresis_P6 = Above

EQUALS Threshold _P6 - BelowHysteresis_P6
IF ApplyHysteresis_P6 = Below

EQUALS Threshold_P6
IF ApplyHysteresis_P6 = NoHyst

END STATE_VARIABLE
END DEFINITION
END MODULE
MODULE DOI_Action_P6
INTERFACE :

IMPORT MinDelay P6 : TIME
END IMPORT

IMPORT MaxDelay P6 : TIME
END IMPORT

IMPORT CONSTANT Direction_P6é : UpDownType
END IMPORT

IMPORT ThresholdedAltit ude_P6 : AboveBelowType
END IMPORT

False)
False)

248

249

IMPORT AltitudeQuality_P6 : AltitudeQualityType
END IMPORT

IMPORT Action0OK_P6 : Boolean
END IMPORT

IMPORT Clock : TIME
END IMPORT

EXPORT PerformAction_P6 : Boolean
END EXPORT

END INTERFACE
DEFINITION

EXPORT PerformAction_P6

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)
END EXPORT

STATE_VARIABLE internal _P6 :
VALUES : {NoAction, Delayed, Perform}
PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE
MinDelay_P6 > 0 S
ActionOK_P6
WHEN (ThresholdedAltitud e _P6
Direction_P6 = Below
WHEN (ThresholdedAltitud e_P6
Direction_P6 = Above

END TABLE

Below)

Above)

* X -3
e I e I |

TRANSITION NoAction TO Peform IF

TABLE
MinDelay_P6 > 0 S
ActionOK_P6
WHEN (ThresholdedAltitud e_P6
Direction_P6 = Down
WHEN (ThresholdedAltitud e_P6
Direction_P6 = Up

END TABLE

Below)

Above)

* # A -1 m
- = * ¥ M

TRANSITION Delayed TO Perform IF
TABLE
DURATION (PRE(internal P 6) IN_STATE Delayed,
0 5, Clock) >= MinDelay_P6
ActionOK_P6
AltitudeQuality_P6 = Valid
Direction_P6 = Down
ThresholdedAltitude_P6
Direction_P6 = Up
ThresholdedAltitude_P6 = Above
END TABLE

Below

* ¥ 33 g
L B R R I B |

TRANSITION Delayed TO NoAction IF
DURATION(PRE(internal P 6) IN_STATE Delayed, 0 S, Clock)

TRANSITION Perform TO NoAction IF
DURATION(PRE(internal P 6) IN_STATE Perform, 0 S, Clock)

END STATE_VARIABLE
END DEFINITION
END MODULE

INCLUDE "standard-modules. nimbus"”

>= MaxDelay_P6

250

